Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgoval Structured version   Visualization version   Unicode version

Theorem itgoval 37731
Description: Value of the integral-over function. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Assertion
Ref Expression
itgoval  |-  ( S 
C_  CC  ->  (IntgOver `  S
)  =  { x  e.  CC  |  E. p  e.  (Poly `  S )
( ( p `  x )  =  0  /\  ( (coeff `  p ) `  (deg `  p ) )  =  1 ) } )
Distinct variable group:    x, S, p

Proof of Theorem itgoval
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 cnex 10017 . . 3  |-  CC  e.  _V
21elpw2 4828 . 2  |-  ( S  e.  ~P CC  <->  S  C_  CC )
3 fveq2 6191 . . . . 5  |-  ( s  =  S  ->  (Poly `  s )  =  (Poly `  S ) )
43rexeqdv 3145 . . . 4  |-  ( s  =  S  ->  ( E. p  e.  (Poly `  s ) ( ( p `  x )  =  0  /\  (
(coeff `  p ) `  (deg `  p )
)  =  1 )  <->  E. p  e.  (Poly `  S ) ( ( p `  x )  =  0  /\  (
(coeff `  p ) `  (deg `  p )
)  =  1 ) ) )
54rabbidv 3189 . . 3  |-  ( s  =  S  ->  { x  e.  CC  |  E. p  e.  (Poly `  s )
( ( p `  x )  =  0  /\  ( (coeff `  p ) `  (deg `  p ) )  =  1 ) }  =  { x  e.  CC  |  E. p  e.  (Poly `  S ) ( ( p `  x )  =  0  /\  (
(coeff `  p ) `  (deg `  p )
)  =  1 ) } )
6 df-itgo 37729 . . 3  |- IntgOver  =  ( s  e.  ~P CC  |->  { x  e.  CC  |  E. p  e.  (Poly `  s ) ( ( p `  x )  =  0  /\  (
(coeff `  p ) `  (deg `  p )
)  =  1 ) } )
71rabex 4813 . . 3  |-  { x  e.  CC  |  E. p  e.  (Poly `  S )
( ( p `  x )  =  0  /\  ( (coeff `  p ) `  (deg `  p ) )  =  1 ) }  e.  _V
85, 6, 7fvmpt 6282 . 2  |-  ( S  e.  ~P CC  ->  (IntgOver `  S )  =  {
x  e.  CC  |  E. p  e.  (Poly `  S ) ( ( p `  x )  =  0  /\  (
(coeff `  p ) `  (deg `  p )
)  =  1 ) } )
92, 8sylbir 225 1  |-  ( S 
C_  CC  ->  (IntgOver `  S
)  =  { x  e.  CC  |  E. p  e.  (Poly `  S )
( ( p `  x )  =  0  /\  ( (coeff `  p ) `  (deg `  p ) )  =  1 ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   {crab 2916    C_ wss 3574   ~Pcpw 4158   ` cfv 5888   CCcc 9934   0cc0 9936   1c1 9937  Polycply 23940  coeffccoe 23942  degcdgr 23943  IntgOvercitgo 37727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-cnex 9992
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-itgo 37729
This theorem is referenced by:  aaitgo  37732  itgoss  37733  itgocn  37734
  Copyright terms: Public domain W3C validator