Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgoss Structured version   Visualization version   Unicode version

Theorem itgoss 37733
Description: An integral element is integral over a subset. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Assertion
Ref Expression
itgoss  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
(IntgOver `  S )  C_  (IntgOver `  T ) )

Proof of Theorem itgoss
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plyss 23955 . . . . 5  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
(Poly `  S )  C_  (Poly `  T )
)
2 ssrexv 3667 . . . . 5  |-  ( (Poly `  S )  C_  (Poly `  T )  ->  ( E. b  e.  (Poly `  S ) ( ( b `  a )  =  0  /\  (
(coeff `  b ) `  (deg `  b )
)  =  1 )  ->  E. b  e.  (Poly `  T ) ( ( b `  a )  =  0  /\  (
(coeff `  b ) `  (deg `  b )
)  =  1 ) ) )
31, 2syl 17 . . . 4  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
( E. b  e.  (Poly `  S )
( ( b `  a )  =  0  /\  ( (coeff `  b ) `  (deg `  b ) )  =  1 )  ->  E. b  e.  (Poly `  T )
( ( b `  a )  =  0  /\  ( (coeff `  b ) `  (deg `  b ) )  =  1 ) ) )
43ralrimivw 2967 . . 3  |-  ( ( S  C_  T  /\  T  C_  CC )  ->  A. a  e.  CC  ( E. b  e.  (Poly `  S ) ( ( b `  a )  =  0  /\  (
(coeff `  b ) `  (deg `  b )
)  =  1 )  ->  E. b  e.  (Poly `  T ) ( ( b `  a )  =  0  /\  (
(coeff `  b ) `  (deg `  b )
)  =  1 ) ) )
5 ss2rab 3678 . . 3  |-  ( { a  e.  CC  |  E. b  e.  (Poly `  S ) ( ( b `  a )  =  0  /\  (
(coeff `  b ) `  (deg `  b )
)  =  1 ) }  C_  { a  e.  CC  |  E. b  e.  (Poly `  T )
( ( b `  a )  =  0  /\  ( (coeff `  b ) `  (deg `  b ) )  =  1 ) }  <->  A. a  e.  CC  ( E. b  e.  (Poly `  S )
( ( b `  a )  =  0  /\  ( (coeff `  b ) `  (deg `  b ) )  =  1 )  ->  E. b  e.  (Poly `  T )
( ( b `  a )  =  0  /\  ( (coeff `  b ) `  (deg `  b ) )  =  1 ) ) )
64, 5sylibr 224 . 2  |-  ( ( S  C_  T  /\  T  C_  CC )  ->  { a  e.  CC  |  E. b  e.  (Poly `  S ) ( ( b `  a )  =  0  /\  (
(coeff `  b ) `  (deg `  b )
)  =  1 ) }  C_  { a  e.  CC  |  E. b  e.  (Poly `  T )
( ( b `  a )  =  0  /\  ( (coeff `  b ) `  (deg `  b ) )  =  1 ) } )
7 sstr 3611 . . 3  |-  ( ( S  C_  T  /\  T  C_  CC )  ->  S  C_  CC )
8 itgoval 37731 . . 3  |-  ( S 
C_  CC  ->  (IntgOver `  S
)  =  { a  e.  CC  |  E. b  e.  (Poly `  S
) ( ( b `
 a )  =  0  /\  ( (coeff `  b ) `  (deg `  b ) )  =  1 ) } )
97, 8syl 17 . 2  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
(IntgOver `  S )  =  { a  e.  CC  |  E. b  e.  (Poly `  S ) ( ( b `  a )  =  0  /\  (
(coeff `  b ) `  (deg `  b )
)  =  1 ) } )
10 itgoval 37731 . . 3  |-  ( T 
C_  CC  ->  (IntgOver `  T
)  =  { a  e.  CC  |  E. b  e.  (Poly `  T
) ( ( b `
 a )  =  0  /\  ( (coeff `  b ) `  (deg `  b ) )  =  1 ) } )
1110adantl 482 . 2  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
(IntgOver `  T )  =  { a  e.  CC  |  E. b  e.  (Poly `  T ) ( ( b `  a )  =  0  /\  (
(coeff `  b ) `  (deg `  b )
)  =  1 ) } )
126, 9, 113sstr4d 3648 1  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
(IntgOver `  S )  C_  (IntgOver `  T ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   A.wral 2912   E.wrex 2913   {crab 2916    C_ wss 3574   ` cfv 5888   CCcc 9934   0cc0 9936   1c1 9937  Polycply 23940  coeffccoe 23942  degcdgr 23943  IntgOvercitgo 37727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-i2m1 10004  ax-1ne0 10005  ax-rrecex 10008  ax-cnre 10009
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-map 7859  df-nn 11021  df-n0 11293  df-ply 23944  df-itgo 37729
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator