Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iundifdifd Structured version   Visualization version   Unicode version

Theorem iundifdifd 29380
Description: The intersection of a set is the complement of the union of the complements. (Contributed by Thierry Arnoux, 19-Dec-2016.)
Assertion
Ref Expression
iundifdifd  |-  ( A 
C_  ~P O  ->  ( A  =/=  (/)  ->  |^| A  =  ( O  \  U_ x  e.  A  ( O  \  x ) ) ) )
Distinct variable groups:    x, A    x, O

Proof of Theorem iundifdifd
StepHypRef Expression
1 iundif2 4587 . . . . 5  |-  U_ x  e.  A  ( O  \  x )  =  ( O  \  |^|_ x  e.  A  x )
2 intiin 4574 . . . . . 6  |-  |^| A  =  |^|_ x  e.  A  x
32difeq2i 3725 . . . . 5  |-  ( O 
\  |^| A )  =  ( O  \  |^|_ x  e.  A  x )
41, 3eqtr4i 2647 . . . 4  |-  U_ x  e.  A  ( O  \  x )  =  ( O  \  |^| A
)
54difeq2i 3725 . . 3  |-  ( O 
\  U_ x  e.  A  ( O  \  x
) )  =  ( O  \  ( O 
\  |^| A ) )
6 intssuni2 4502 . . . . 5  |-  ( ( A  C_  ~P O  /\  A  =/=  (/) )  ->  |^| A  C_  U. ~P O
)
7 unipw 4918 . . . . 5  |-  U. ~P O  =  O
86, 7syl6sseq 3651 . . . 4  |-  ( ( A  C_  ~P O  /\  A  =/=  (/) )  ->  |^| A  C_  O )
9 dfss4 3858 . . . 4  |-  ( |^| A  C_  O  <->  ( O  \  ( O  \  |^| A ) )  = 
|^| A )
108, 9sylib 208 . . 3  |-  ( ( A  C_  ~P O  /\  A  =/=  (/) )  -> 
( O  \  ( O  \  |^| A ) )  =  |^| A
)
115, 10syl5req 2669 . 2  |-  ( ( A  C_  ~P O  /\  A  =/=  (/) )  ->  |^| A  =  ( O 
\  U_ x  e.  A  ( O  \  x
) ) )
1211ex 450 1  |-  ( A 
C_  ~P O  ->  ( A  =/=  (/)  ->  |^| A  =  ( O  \  U_ x  e.  A  ( O  \  x ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    =/= wne 2794    \ cdif 3571    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   U.cuni 4436   |^|cint 4475   U_ciun 4520   |^|_ciin 4521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-pw 4160  df-sn 4178  df-pr 4180  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523
This theorem is referenced by:  sigaclci  30195
  Copyright terms: Public domain W3C validator