Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iuninc Structured version   Visualization version   Unicode version

Theorem iuninc 29379
Description: The union of an increasing collection of sets is its last element. (Contributed by Thierry Arnoux, 22-Jan-2017.)
Hypotheses
Ref Expression
iuninc.1  |-  ( ph  ->  F  Fn  NN )
iuninc.2  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n )  C_  ( F `  ( n  +  1 ) ) )
Assertion
Ref Expression
iuninc  |-  ( (
ph  /\  i  e.  NN )  ->  U_ n  e.  ( 1 ... i
) ( F `  n )  =  ( F `  i ) )
Distinct variable groups:    i, n    n, F    ph, n
Allowed substitution hints:    ph( i)    F( i)

Proof of Theorem iuninc
Dummy variables  j 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6658 . . . . . 6  |-  ( j  =  1  ->  (
1 ... j )  =  ( 1 ... 1
) )
21iuneq1d 4545 . . . . 5  |-  ( j  =  1  ->  U_ n  e.  ( 1 ... j
) ( F `  n )  =  U_ n  e.  ( 1 ... 1 ) ( F `  n ) )
3 fveq2 6191 . . . . 5  |-  ( j  =  1  ->  ( F `  j )  =  ( F ` 
1 ) )
42, 3eqeq12d 2637 . . . 4  |-  ( j  =  1  ->  ( U_ n  e.  (
1 ... j ) ( F `  n )  =  ( F `  j )  <->  U_ n  e.  ( 1 ... 1
) ( F `  n )  =  ( F `  1 ) ) )
54imbi2d 330 . . 3  |-  ( j  =  1  ->  (
( ph  ->  U_ n  e.  ( 1 ... j
) ( F `  n )  =  ( F `  j ) )  <->  ( ph  ->  U_ n  e.  ( 1 ... 1 ) ( F `  n )  =  ( F ` 
1 ) ) ) )
6 oveq2 6658 . . . . . 6  |-  ( j  =  k  ->  (
1 ... j )  =  ( 1 ... k
) )
76iuneq1d 4545 . . . . 5  |-  ( j  =  k  ->  U_ n  e.  ( 1 ... j
) ( F `  n )  =  U_ n  e.  ( 1 ... k ) ( F `  n ) )
8 fveq2 6191 . . . . 5  |-  ( j  =  k  ->  ( F `  j )  =  ( F `  k ) )
97, 8eqeq12d 2637 . . . 4  |-  ( j  =  k  ->  ( U_ n  e.  (
1 ... j ) ( F `  n )  =  ( F `  j )  <->  U_ n  e.  ( 1 ... k
) ( F `  n )  =  ( F `  k ) ) )
109imbi2d 330 . . 3  |-  ( j  =  k  ->  (
( ph  ->  U_ n  e.  ( 1 ... j
) ( F `  n )  =  ( F `  j ) )  <->  ( ph  ->  U_ n  e.  ( 1 ... k ) ( F `  n )  =  ( F `  k ) ) ) )
11 oveq2 6658 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  (
1 ... j )  =  ( 1 ... (
k  +  1 ) ) )
1211iuneq1d 4545 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  U_ n  e.  ( 1 ... j
) ( F `  n )  =  U_ n  e.  ( 1 ... ( k  +  1 ) ) ( F `  n ) )
13 fveq2 6191 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  ( F `  j )  =  ( F `  ( k  +  1 ) ) )
1412, 13eqeq12d 2637 . . . 4  |-  ( j  =  ( k  +  1 )  ->  ( U_ n  e.  (
1 ... j ) ( F `  n )  =  ( F `  j )  <->  U_ n  e.  ( 1 ... (
k  +  1 ) ) ( F `  n )  =  ( F `  ( k  +  1 ) ) ) )
1514imbi2d 330 . . 3  |-  ( j  =  ( k  +  1 )  ->  (
( ph  ->  U_ n  e.  ( 1 ... j
) ( F `  n )  =  ( F `  j ) )  <->  ( ph  ->  U_ n  e.  ( 1 ... ( k  +  1 ) ) ( F `  n )  =  ( F `  ( k  +  1 ) ) ) ) )
16 oveq2 6658 . . . . . 6  |-  ( j  =  i  ->  (
1 ... j )  =  ( 1 ... i
) )
1716iuneq1d 4545 . . . . 5  |-  ( j  =  i  ->  U_ n  e.  ( 1 ... j
) ( F `  n )  =  U_ n  e.  ( 1 ... i ) ( F `  n ) )
18 fveq2 6191 . . . . 5  |-  ( j  =  i  ->  ( F `  j )  =  ( F `  i ) )
1917, 18eqeq12d 2637 . . . 4  |-  ( j  =  i  ->  ( U_ n  e.  (
1 ... j ) ( F `  n )  =  ( F `  j )  <->  U_ n  e.  ( 1 ... i
) ( F `  n )  =  ( F `  i ) ) )
2019imbi2d 330 . . 3  |-  ( j  =  i  ->  (
( ph  ->  U_ n  e.  ( 1 ... j
) ( F `  n )  =  ( F `  j ) )  <->  ( ph  ->  U_ n  e.  ( 1 ... i ) ( F `  n )  =  ( F `  i ) ) ) )
21 1z 11407 . . . . . . 7  |-  1  e.  ZZ
22 fzsn 12383 . . . . . . 7  |-  ( 1  e.  ZZ  ->  (
1 ... 1 )  =  { 1 } )
2321, 22ax-mp 5 . . . . . 6  |-  ( 1 ... 1 )  =  { 1 }
24 iuneq1 4534 . . . . . 6  |-  ( ( 1 ... 1 )  =  { 1 }  ->  U_ n  e.  ( 1 ... 1 ) ( F `  n
)  =  U_ n  e.  { 1 }  ( F `  n )
)
2523, 24ax-mp 5 . . . . 5  |-  U_ n  e.  ( 1 ... 1
) ( F `  n )  =  U_ n  e.  { 1 }  ( F `  n )
26 1ex 10035 . . . . . 6  |-  1  e.  _V
27 fveq2 6191 . . . . . 6  |-  ( n  =  1  ->  ( F `  n )  =  ( F ` 
1 ) )
2826, 27iunxsn 4603 . . . . 5  |-  U_ n  e.  { 1 }  ( F `  n )  =  ( F ` 
1 )
2925, 28eqtri 2644 . . . 4  |-  U_ n  e.  ( 1 ... 1
) ( F `  n )  =  ( F `  1 )
3029a1i 11 . . 3  |-  ( ph  ->  U_ n  e.  ( 1 ... 1 ) ( F `  n
)  =  ( F `
 1 ) )
31 simpll 790 . . . . . . 7  |-  ( ( ( k  e.  NN  /\ 
ph )  /\  U_ n  e.  ( 1 ... k ) ( F `  n )  =  ( F `  k ) )  -> 
k  e.  NN )
32 elnnuz 11724 . . . . . . . . . 10  |-  ( k  e.  NN  <->  k  e.  ( ZZ>= `  1 )
)
33 fzsuc 12388 . . . . . . . . . 10  |-  ( k  e.  ( ZZ>= `  1
)  ->  ( 1 ... ( k  +  1 ) )  =  ( ( 1 ... k )  u.  {
( k  +  1 ) } ) )
3432, 33sylbi 207 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
1 ... ( k  +  1 ) )  =  ( ( 1 ... k )  u.  {
( k  +  1 ) } ) )
3534iuneq1d 4545 . . . . . . . 8  |-  ( k  e.  NN  ->  U_ n  e.  ( 1 ... (
k  +  1 ) ) ( F `  n )  =  U_ n  e.  ( (
1 ... k )  u. 
{ ( k  +  1 ) } ) ( F `  n
) )
36 iunxun 4605 . . . . . . . . 9  |-  U_ n  e.  ( ( 1 ... k )  u.  {
( k  +  1 ) } ) ( F `  n )  =  ( U_ n  e.  ( 1 ... k
) ( F `  n )  u.  U_ n  e.  { (
k  +  1 ) }  ( F `  n ) )
37 ovex 6678 . . . . . . . . . . 11  |-  ( k  +  1 )  e. 
_V
38 fveq2 6191 . . . . . . . . . . 11  |-  ( n  =  ( k  +  1 )  ->  ( F `  n )  =  ( F `  ( k  +  1 ) ) )
3937, 38iunxsn 4603 . . . . . . . . . 10  |-  U_ n  e.  { ( k  +  1 ) }  ( F `  n )  =  ( F `  ( k  +  1 ) )
4039uneq2i 3764 . . . . . . . . 9  |-  ( U_ n  e.  ( 1 ... k ) ( F `  n )  u.  U_ n  e. 
{ ( k  +  1 ) }  ( F `  n )
)  =  ( U_ n  e.  ( 1 ... k ) ( F `  n )  u.  ( F `  ( k  +  1 ) ) )
4136, 40eqtri 2644 . . . . . . . 8  |-  U_ n  e.  ( ( 1 ... k )  u.  {
( k  +  1 ) } ) ( F `  n )  =  ( U_ n  e.  ( 1 ... k
) ( F `  n )  u.  ( F `  ( k  +  1 ) ) )
4235, 41syl6eq 2672 . . . . . . 7  |-  ( k  e.  NN  ->  U_ n  e.  ( 1 ... (
k  +  1 ) ) ( F `  n )  =  (
U_ n  e.  ( 1 ... k ) ( F `  n
)  u.  ( F `
 ( k  +  1 ) ) ) )
4331, 42syl 17 . . . . . 6  |-  ( ( ( k  e.  NN  /\ 
ph )  /\  U_ n  e.  ( 1 ... k ) ( F `  n )  =  ( F `  k ) )  ->  U_ n  e.  (
1 ... ( k  +  1 ) ) ( F `  n )  =  ( U_ n  e.  ( 1 ... k
) ( F `  n )  u.  ( F `  ( k  +  1 ) ) ) )
44 simpr 477 . . . . . . 7  |-  ( ( ( k  e.  NN  /\ 
ph )  /\  U_ n  e.  ( 1 ... k ) ( F `  n )  =  ( F `  k ) )  ->  U_ n  e.  (
1 ... k ) ( F `  n )  =  ( F `  k ) )
4544uneq1d 3766 . . . . . 6  |-  ( ( ( k  e.  NN  /\ 
ph )  /\  U_ n  e.  ( 1 ... k ) ( F `  n )  =  ( F `  k ) )  -> 
( U_ n  e.  ( 1 ... k ) ( F `  n
)  u.  ( F `
 ( k  +  1 ) ) )  =  ( ( F `
 k )  u.  ( F `  (
k  +  1 ) ) ) )
46 simplr 792 . . . . . . 7  |-  ( ( ( k  e.  NN  /\ 
ph )  /\  U_ n  e.  ( 1 ... k ) ( F `  n )  =  ( F `  k ) )  ->  ph )
47 iuninc.2 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n )  C_  ( F `  ( n  +  1 ) ) )
4847sbt 2419 . . . . . . . . 9  |-  [ k  /  n ] ( ( ph  /\  n  e.  NN )  ->  ( F `  n )  C_  ( F `  (
n  +  1 ) ) )
49 sbim 2395 . . . . . . . . . 10  |-  ( [ k  /  n ]
( ( ph  /\  n  e.  NN )  ->  ( F `  n
)  C_  ( F `  ( n  +  1 ) ) )  <->  ( [
k  /  n ]
( ph  /\  n  e.  NN )  ->  [ k  /  n ] ( F `  n ) 
C_  ( F `  ( n  +  1
) ) ) )
50 sban 2399 . . . . . . . . . . . 12  |-  ( [ k  /  n ]
( ph  /\  n  e.  NN )  <->  ( [
k  /  n ] ph  /\  [ k  /  n ] n  e.  NN ) )
51 nfv 1843 . . . . . . . . . . . . . 14  |-  F/ n ph
5251sbf 2380 . . . . . . . . . . . . 13  |-  ( [ k  /  n ] ph 
<-> 
ph )
53 clelsb3 2729 . . . . . . . . . . . . 13  |-  ( [ k  /  n ]
n  e.  NN  <->  k  e.  NN )
5452, 53anbi12i 733 . . . . . . . . . . . 12  |-  ( ( [ k  /  n ] ph  /\  [ k  /  n ] n  e.  NN )  <->  ( ph  /\  k  e.  NN ) )
5550, 54bitr2i 265 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  <->  [ k  /  n ] ( ph  /\  n  e.  NN )
)
56 sbsbc 3439 . . . . . . . . . . . 12  |-  ( [ k  /  n ]
( F `  n
)  C_  ( F `  ( n  +  1 ) )  <->  [. k  /  n ]. ( F `  n )  C_  ( F `  ( n  +  1 ) ) )
57 vex 3203 . . . . . . . . . . . . 13  |-  k  e. 
_V
58 sbcssg 4085 . . . . . . . . . . . . 13  |-  ( k  e.  _V  ->  ( [. k  /  n ]. ( F `  n
)  C_  ( F `  ( n  +  1 ) )  <->  [_ k  /  n ]_ ( F `  n )  C_  [_ k  /  n ]_ ( F `
 ( n  + 
1 ) ) ) )
5957, 58ax-mp 5 . . . . . . . . . . . 12  |-  ( [. k  /  n ]. ( F `  n )  C_  ( F `  (
n  +  1 ) )  <->  [_ k  /  n ]_ ( F `  n
)  C_  [_ k  /  n ]_ ( F `  ( n  +  1
) ) )
60 csbfv 6233 . . . . . . . . . . . . 13  |-  [_ k  /  n ]_ ( F `
 n )  =  ( F `  k
)
61 csbfv2g 6232 . . . . . . . . . . . . . . 15  |-  ( k  e.  _V  ->  [_ k  /  n ]_ ( F `
 ( n  + 
1 ) )  =  ( F `  [_ k  /  n ]_ ( n  +  1 ) ) )
6257, 61ax-mp 5 . . . . . . . . . . . . . 14  |-  [_ k  /  n ]_ ( F `
 ( n  + 
1 ) )  =  ( F `  [_ k  /  n ]_ ( n  +  1 ) )
63 csbov1g 6690 . . . . . . . . . . . . . . . 16  |-  ( k  e.  _V  ->  [_ k  /  n ]_ ( n  +  1 )  =  ( [_ k  /  n ]_ n  +  1 ) )
6457, 63ax-mp 5 . . . . . . . . . . . . . . 15  |-  [_ k  /  n ]_ ( n  +  1 )  =  ( [_ k  /  n ]_ n  +  1 )
6564fveq2i 6194 . . . . . . . . . . . . . 14  |-  ( F `
 [_ k  /  n ]_ ( n  +  1 ) )  =  ( F `  ( [_ k  /  n ]_ n  +  1 ) )
66 csbvarg 4003 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  _V  ->  [_ k  /  n ]_ n  =  k )
6757, 66ax-mp 5 . . . . . . . . . . . . . . . 16  |-  [_ k  /  n ]_ n  =  k
6867oveq1i 6660 . . . . . . . . . . . . . . 15  |-  ( [_ k  /  n ]_ n  +  1 )  =  ( k  +  1 )
6968fveq2i 6194 . . . . . . . . . . . . . 14  |-  ( F `
 ( [_ k  /  n ]_ n  + 
1 ) )  =  ( F `  (
k  +  1 ) )
7062, 65, 693eqtri 2648 . . . . . . . . . . . . 13  |-  [_ k  /  n ]_ ( F `
 ( n  + 
1 ) )  =  ( F `  (
k  +  1 ) )
7160, 70sseq12i 3631 . . . . . . . . . . . 12  |-  ( [_ k  /  n ]_ ( F `  n )  C_ 
[_ k  /  n ]_ ( F `  (
n  +  1 ) )  <->  ( F `  k )  C_  ( F `  ( k  +  1 ) ) )
7256, 59, 713bitrri 287 . . . . . . . . . . 11  |-  ( ( F `  k ) 
C_  ( F `  ( k  +  1 ) )  <->  [ k  /  n ] ( F `
 n )  C_  ( F `  ( n  +  1 ) ) )
7355, 72imbi12i 340 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  ->  ( F `  k )  C_  ( F `  (
k  +  1 ) ) )  <->  ( [
k  /  n ]
( ph  /\  n  e.  NN )  ->  [ k  /  n ] ( F `  n ) 
C_  ( F `  ( n  +  1
) ) ) )
7449, 73bitr4i 267 . . . . . . . . 9  |-  ( [ k  /  n ]
( ( ph  /\  n  e.  NN )  ->  ( F `  n
)  C_  ( F `  ( n  +  1 ) ) )  <->  ( ( ph  /\  k  e.  NN )  ->  ( F `  k )  C_  ( F `  ( k  +  1 ) ) ) )
7548, 74mpbi 220 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  C_  ( F `  ( k  +  1 ) ) )
76 ssequn1 3783 . . . . . . . 8  |-  ( ( F `  k ) 
C_  ( F `  ( k  +  1 ) )  <->  ( ( F `  k )  u.  ( F `  (
k  +  1 ) ) )  =  ( F `  ( k  +  1 ) ) )
7775, 76sylib 208 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( F `  k )  u.  ( F `  ( k  +  1 ) ) )  =  ( F `  (
k  +  1 ) ) )
7846, 31, 77syl2anc 693 . . . . . 6  |-  ( ( ( k  e.  NN  /\ 
ph )  /\  U_ n  e.  ( 1 ... k ) ( F `  n )  =  ( F `  k ) )  -> 
( ( F `  k )  u.  ( F `  ( k  +  1 ) ) )  =  ( F `
 ( k  +  1 ) ) )
7943, 45, 783eqtrd 2660 . . . . 5  |-  ( ( ( k  e.  NN  /\ 
ph )  /\  U_ n  e.  ( 1 ... k ) ( F `  n )  =  ( F `  k ) )  ->  U_ n  e.  (
1 ... ( k  +  1 ) ) ( F `  n )  =  ( F `  ( k  +  1 ) ) )
8079exp31 630 . . . 4  |-  ( k  e.  NN  ->  ( ph  ->  ( U_ n  e.  ( 1 ... k
) ( F `  n )  =  ( F `  k )  ->  U_ n  e.  ( 1 ... ( k  +  1 ) ) ( F `  n
)  =  ( F `
 ( k  +  1 ) ) ) ) )
8180a2d 29 . . 3  |-  ( k  e.  NN  ->  (
( ph  ->  U_ n  e.  ( 1 ... k
) ( F `  n )  =  ( F `  k ) )  ->  ( ph  ->  U_ n  e.  ( 1 ... ( k  +  1 ) ) ( F `  n
)  =  ( F `
 ( k  +  1 ) ) ) ) )
825, 10, 15, 20, 30, 81nnind 11038 . 2  |-  ( i  e.  NN  ->  ( ph  ->  U_ n  e.  ( 1 ... i ) ( F `  n
)  =  ( F `
 i ) ) )
8382impcom 446 1  |-  ( (
ph  /\  i  e.  NN )  ->  U_ n  e.  ( 1 ... i
) ( F `  n )  =  ( F `  i ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   [wsb 1880    e. wcel 1990   _Vcvv 3200   [.wsbc 3435   [_csb 3533    u. cun 3572    C_ wss 3574   {csn 4177   U_ciun 4520    Fn wfn 5883   ` cfv 5888  (class class class)co 6650   1c1 9937    + caddc 9939   NNcn 11020   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327
This theorem is referenced by:  meascnbl  30282
  Copyright terms: Public domain W3C validator