| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunpw | Structured version Visualization version Unicode version | ||
| Description: An indexed union of a power class in terms of the power class of the union of its index. Part of Exercise 24(b) of [Enderton] p. 33. (Contributed by NM, 29-Nov-2003.) |
| Ref | Expression |
|---|---|
| iunpw.1 |
|
| Ref | Expression |
|---|---|
| iunpw |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 3627 |
. . . . . . . 8
| |
| 2 | 1 | biimprcd 240 |
. . . . . . 7
|
| 3 | 2 | reximdv 3016 |
. . . . . 6
|
| 4 | 3 | com12 32 |
. . . . 5
|
| 5 | ssiun 4562 |
. . . . . 6
| |
| 6 | uniiun 4573 |
. . . . . 6
| |
| 7 | 5, 6 | syl6sseqr 3652 |
. . . . 5
|
| 8 | 4, 7 | impbid1 215 |
. . . 4
|
| 9 | selpw 4165 |
. . . 4
| |
| 10 | eliun 4524 |
. . . . 5
| |
| 11 | selpw 4165 |
. . . . . 6
| |
| 12 | 11 | rexbii 3041 |
. . . . 5
|
| 13 | 10, 12 | bitri 264 |
. . . 4
|
| 14 | 8, 9, 13 | 3bitr4g 303 |
. . 3
|
| 15 | 14 | eqrdv 2620 |
. 2
|
| 16 | ssid 3624 |
. . . . 5
| |
| 17 | iunpw.1 |
. . . . . . . 8
| |
| 18 | 17 | uniex 6953 |
. . . . . . 7
|
| 19 | 18 | elpw 4164 |
. . . . . 6
|
| 20 | eleq2 2690 |
. . . . . 6
| |
| 21 | 19, 20 | syl5bbr 274 |
. . . . 5
|
| 22 | 16, 21 | mpbii 223 |
. . . 4
|
| 23 | eliun 4524 |
. . . 4
| |
| 24 | 22, 23 | sylib 208 |
. . 3
|
| 25 | elssuni 4467 |
. . . . . . 7
| |
| 26 | elpwi 4168 |
. . . . . . 7
| |
| 27 | 25, 26 | anim12i 590 |
. . . . . 6
|
| 28 | eqss 3618 |
. . . . . 6
| |
| 29 | 27, 28 | sylibr 224 |
. . . . 5
|
| 30 | 29 | ex 450 |
. . . 4
|
| 31 | 30 | reximia 3009 |
. . 3
|
| 32 | 24, 31 | syl 17 |
. 2
|
| 33 | 15, 32 | impbii 199 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-in 3581 df-ss 3588 df-pw 4160 df-uni 4437 df-iun 4522 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |