| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aciunf1 | Structured version Visualization version Unicode version | ||
| Description: Choice in an index union. (Contributed by Thierry Arnoux, 4-May-2020.) |
| Ref | Expression |
|---|---|
| aciunf1.0 |
|
| aciunf1.1 |
|
| Ref | Expression |
|---|---|
| aciunf1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 3687 |
. . . 4
| |
| 2 | aciunf1.0 |
. . . 4
| |
| 3 | ssexg 4804 |
. . . 4
| |
| 4 | 1, 2, 3 | sylancr 695 |
. . 3
|
| 5 | rabid 3116 |
. . . . . 6
| |
| 6 | 5 | biimpi 206 |
. . . . 5
|
| 7 | 6 | adantl 482 |
. . . 4
|
| 8 | 7 | simprd 479 |
. . 3
|
| 9 | nfrab1 3122 |
. . 3
| |
| 10 | 7 | simpld 475 |
. . . 4
|
| 11 | aciunf1.1 |
. . . 4
| |
| 12 | 10, 11 | syldan 487 |
. . 3
|
| 13 | 4, 8, 9, 12 | aciunf1lem 29462 |
. 2
|
| 14 | eqidd 2623 |
. . . . 5
| |
| 15 | nfv 1843 |
. . . . . . 7
| |
| 16 | nfcv 2764 |
. . . . . . . 8
| |
| 17 | nfrab1 3122 |
. . . . . . . 8
| |
| 18 | 16, 17 | nfdif 3731 |
. . . . . . 7
|
| 19 | difrab 3901 |
. . . . . . . . 9
| |
| 20 | 16 | rabtru 3361 |
. . . . . . . . . 10
|
| 21 | 20 | difeq1i 3724 |
. . . . . . . . 9
|
| 22 | truan 1501 |
. . . . . . . . . . . . 13
| |
| 23 | df-ne 2795 |
. . . . . . . . . . . . 13
| |
| 24 | 22, 23 | bitr4i 267 |
. . . . . . . . . . . 12
|
| 25 | 24 | a1i 11 |
. . . . . . . . . . 11
|
| 26 | 25 | rabbidv 3189 |
. . . . . . . . . 10
|
| 27 | 26 | trud 1493 |
. . . . . . . . 9
|
| 28 | 19, 21, 27 | 3eqtr3i 2652 |
. . . . . . . 8
|
| 29 | 28 | a1i 11 |
. . . . . . 7
|
| 30 | eqidd 2623 |
. . . . . . 7
| |
| 31 | 15, 18, 9, 29, 30 | iuneq12df 4544 |
. . . . . 6
|
| 32 | rabid 3116 |
. . . . . . . . . . 11
| |
| 33 | 32 | biimpi 206 |
. . . . . . . . . 10
|
| 34 | 33 | adantl 482 |
. . . . . . . . 9
|
| 35 | 34 | simprd 479 |
. . . . . . . 8
|
| 36 | 35 | ralrimiva 2966 |
. . . . . . 7
|
| 37 | 17 | iunxdif3 4606 |
. . . . . . 7
|
| 38 | 36, 37 | syl 17 |
. . . . . 6
|
| 39 | 31, 38 | eqtr3d 2658 |
. . . . 5
|
| 40 | eqidd 2623 |
. . . . . . 7
| |
| 41 | 15, 18, 9, 29, 40 | iuneq12df 4544 |
. . . . . 6
|
| 42 | 35 | xpeq2d 5139 |
. . . . . . . . 9
|
| 43 | xp0 5552 |
. . . . . . . . 9
| |
| 44 | 42, 43 | syl6eq 2672 |
. . . . . . . 8
|
| 45 | 44 | ralrimiva 2966 |
. . . . . . 7
|
| 46 | 17 | iunxdif3 4606 |
. . . . . . 7
|
| 47 | 45, 46 | syl 17 |
. . . . . 6
|
| 48 | 41, 47 | eqtr3d 2658 |
. . . . 5
|
| 49 | 14, 39, 48 | f1eq123d 6131 |
. . . 4
|
| 50 | 39 | raleqdv 3144 |
. . . 4
|
| 51 | 49, 50 | anbi12d 747 |
. . 3
|
| 52 | 51 | exbidv 1850 |
. 2
|
| 53 | 13, 52 | mpbid 222 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-reg 8497 ax-inf2 8538 ax-ac2 9285 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-om 7066 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-en 7956 df-r1 8627 df-rank 8628 df-card 8765 df-ac 8939 |
| This theorem is referenced by: fsumiunle 29575 esumiun 30156 |
| Copyright terms: Public domain | W3C validator |