Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aciunf1 Structured version   Visualization version   Unicode version

Theorem aciunf1 29463
Description: Choice in an index union. (Contributed by Thierry Arnoux, 4-May-2020.)
Hypotheses
Ref Expression
aciunf1.0  |-  ( ph  ->  A  e.  V )
aciunf1.1  |-  ( (
ph  /\  j  e.  A )  ->  B  e.  W )
Assertion
Ref Expression
aciunf1  |-  ( ph  ->  E. f ( f : U_ j  e.  A  B -1-1-> U_ j  e.  A  ( {
j }  X.  B
)  /\  A. k  e.  U_  j  e.  A  B ( 2nd `  (
f `  k )
)  =  k ) )
Distinct variable groups:    A, j,
k, f    B, f,
k    j, W    ph, f, j, k
Allowed substitution hints:    B( j)    V( f, j, k)    W( f, k)

Proof of Theorem aciunf1
StepHypRef Expression
1 ssrab2 3687 . . . 4  |-  { j  e.  A  |  B  =/=  (/) }  C_  A
2 aciunf1.0 . . . 4  |-  ( ph  ->  A  e.  V )
3 ssexg 4804 . . . 4  |-  ( ( { j  e.  A  |  B  =/=  (/) }  C_  A  /\  A  e.  V
)  ->  { j  e.  A  |  B  =/=  (/) }  e.  _V )
41, 2, 3sylancr 695 . . 3  |-  ( ph  ->  { j  e.  A  |  B  =/=  (/) }  e.  _V )
5 rabid 3116 . . . . . 6  |-  ( j  e.  { j  e.  A  |  B  =/=  (/) }  <->  ( j  e.  A  /\  B  =/=  (/) ) )
65biimpi 206 . . . . 5  |-  ( j  e.  { j  e.  A  |  B  =/=  (/) }  ->  ( j  e.  A  /\  B  =/=  (/) ) )
76adantl 482 . . . 4  |-  ( (
ph  /\  j  e.  { j  e.  A  |  B  =/=  (/) } )  -> 
( j  e.  A  /\  B  =/=  (/) ) )
87simprd 479 . . 3  |-  ( (
ph  /\  j  e.  { j  e.  A  |  B  =/=  (/) } )  ->  B  =/=  (/) )
9 nfrab1 3122 . . 3  |-  F/_ j { j  e.  A  |  B  =/=  (/) }
107simpld 475 . . . 4  |-  ( (
ph  /\  j  e.  { j  e.  A  |  B  =/=  (/) } )  -> 
j  e.  A )
11 aciunf1.1 . . . 4  |-  ( (
ph  /\  j  e.  A )  ->  B  e.  W )
1210, 11syldan 487 . . 3  |-  ( (
ph  /\  j  e.  { j  e.  A  |  B  =/=  (/) } )  ->  B  e.  W )
134, 8, 9, 12aciunf1lem 29462 . 2  |-  ( ph  ->  E. f ( f : U_ j  e. 
{ j  e.  A  |  B  =/=  (/) } B -1-1-> U_ j  e.  { j  e.  A  |  B  =/=  (/) }  ( { j }  X.  B
)  /\  A. k  e.  U_  j  e.  {
j  e.  A  |  B  =/=  (/) } B ( 2nd `  ( f `
 k ) )  =  k ) )
14 eqidd 2623 . . . . 5  |-  ( ph  ->  f  =  f )
15 nfv 1843 . . . . . . 7  |-  F/ j
ph
16 nfcv 2764 . . . . . . . 8  |-  F/_ j A
17 nfrab1 3122 . . . . . . . 8  |-  F/_ j { j  e.  A  |  B  =  (/) }
1816, 17nfdif 3731 . . . . . . 7  |-  F/_ j
( A  \  {
j  e.  A  |  B  =  (/) } )
19 difrab 3901 . . . . . . . . 9  |-  ( { j  e.  A  | T.  }  \  { j  e.  A  |  B  =  (/) } )  =  { j  e.  A  |  ( T.  /\  -.  B  =  (/) ) }
2016rabtru 3361 . . . . . . . . . 10  |-  { j  e.  A  | T.  }  =  A
2120difeq1i 3724 . . . . . . . . 9  |-  ( { j  e.  A  | T.  }  \  { j  e.  A  |  B  =  (/) } )  =  ( A  \  {
j  e.  A  |  B  =  (/) } )
22 truan 1501 . . . . . . . . . . . . 13  |-  ( ( T.  /\  -.  B  =  (/) )  <->  -.  B  =  (/) )
23 df-ne 2795 . . . . . . . . . . . . 13  |-  ( B  =/=  (/)  <->  -.  B  =  (/) )
2422, 23bitr4i 267 . . . . . . . . . . . 12  |-  ( ( T.  /\  -.  B  =  (/) )  <->  B  =/=  (/) )
2524a1i 11 . . . . . . . . . . 11  |-  ( T. 
->  ( ( T.  /\  -.  B  =  (/) )  <->  B  =/=  (/) ) )
2625rabbidv 3189 . . . . . . . . . 10  |-  ( T. 
->  { j  e.  A  |  ( T.  /\  -.  B  =  (/) ) }  =  { j  e.  A  |  B  =/=  (/) } )
2726trud 1493 . . . . . . . . 9  |-  { j  e.  A  |  ( T.  /\  -.  B  =  (/) ) }  =  { j  e.  A  |  B  =/=  (/) }
2819, 21, 273eqtr3i 2652 . . . . . . . 8  |-  ( A 
\  { j  e.  A  |  B  =  (/) } )  =  {
j  e.  A  |  B  =/=  (/) }
2928a1i 11 . . . . . . 7  |-  ( ph  ->  ( A  \  {
j  e.  A  |  B  =  (/) } )  =  { j  e.  A  |  B  =/=  (/) } )
30 eqidd 2623 . . . . . . 7  |-  ( ph  ->  B  =  B )
3115, 18, 9, 29, 30iuneq12df 4544 . . . . . 6  |-  ( ph  ->  U_ j  e.  ( A  \  { j  e.  A  |  B  =  (/) } ) B  =  U_ j  e. 
{ j  e.  A  |  B  =/=  (/) } B
)
32 rabid 3116 . . . . . . . . . . 11  |-  ( j  e.  { j  e.  A  |  B  =  (/) }  <->  ( j  e.  A  /\  B  =  (/) ) )
3332biimpi 206 . . . . . . . . . 10  |-  ( j  e.  { j  e.  A  |  B  =  (/) }  ->  ( j  e.  A  /\  B  =  (/) ) )
3433adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  { j  e.  A  |  B  =  (/) } )  ->  ( j  e.  A  /\  B  =  (/) ) )
3534simprd 479 . . . . . . . 8  |-  ( (
ph  /\  j  e.  { j  e.  A  |  B  =  (/) } )  ->  B  =  (/) )
3635ralrimiva 2966 . . . . . . 7  |-  ( ph  ->  A. j  e.  {
j  e.  A  |  B  =  (/) } B  =  (/) )
3717iunxdif3 4606 . . . . . . 7  |-  ( A. j  e.  { j  e.  A  |  B  =  (/) } B  =  (/)  ->  U_ j  e.  ( A  \  { j  e.  A  |  B  =  (/) } ) B  =  U_ j  e.  A  B )
3836, 37syl 17 . . . . . 6  |-  ( ph  ->  U_ j  e.  ( A  \  { j  e.  A  |  B  =  (/) } ) B  =  U_ j  e.  A  B )
3931, 38eqtr3d 2658 . . . . 5  |-  ( ph  ->  U_ j  e.  {
j  e.  A  |  B  =/=  (/) } B  = 
U_ j  e.  A  B )
40 eqidd 2623 . . . . . . 7  |-  ( ph  ->  ( { j }  X.  B )  =  ( { j }  X.  B ) )
4115, 18, 9, 29, 40iuneq12df 4544 . . . . . 6  |-  ( ph  ->  U_ j  e.  ( A  \  { j  e.  A  |  B  =  (/) } ) ( { j }  X.  B )  =  U_ j  e.  { j  e.  A  |  B  =/=  (/) }  ( { j }  X.  B
) )
4235xpeq2d 5139 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  { j  e.  A  |  B  =  (/) } )  ->  ( { j }  X.  B )  =  ( { j }  X.  (/) ) )
43 xp0 5552 . . . . . . . . 9  |-  ( { j }  X.  (/) )  =  (/)
4442, 43syl6eq 2672 . . . . . . . 8  |-  ( (
ph  /\  j  e.  { j  e.  A  |  B  =  (/) } )  ->  ( { j }  X.  B )  =  (/) )
4544ralrimiva 2966 . . . . . . 7  |-  ( ph  ->  A. j  e.  {
j  e.  A  |  B  =  (/) }  ( { j }  X.  B )  =  (/) )
4617iunxdif3 4606 . . . . . . 7  |-  ( A. j  e.  { j  e.  A  |  B  =  (/) }  ( { j }  X.  B
)  =  (/)  ->  U_ j  e.  ( A  \  {
j  e.  A  |  B  =  (/) } ) ( { j }  X.  B )  = 
U_ j  e.  A  ( { j }  X.  B ) )
4745, 46syl 17 . . . . . 6  |-  ( ph  ->  U_ j  e.  ( A  \  { j  e.  A  |  B  =  (/) } ) ( { j }  X.  B )  =  U_ j  e.  A  ( { j }  X.  B ) )
4841, 47eqtr3d 2658 . . . . 5  |-  ( ph  ->  U_ j  e.  {
j  e.  A  |  B  =/=  (/) }  ( { j }  X.  B
)  =  U_ j  e.  A  ( {
j }  X.  B
) )
4914, 39, 48f1eq123d 6131 . . . 4  |-  ( ph  ->  ( f : U_ j  e.  { j  e.  A  |  B  =/=  (/) } B -1-1-> U_ j  e.  { j  e.  A  |  B  =/=  (/) }  ( { j }  X.  B
)  <->  f : U_ j  e.  A  B -1-1-> U_ j  e.  A  ( { j }  X.  B ) ) )
5039raleqdv 3144 . . . 4  |-  ( ph  ->  ( A. k  e. 
U_  j  e.  {
j  e.  A  |  B  =/=  (/) } B ( 2nd `  ( f `
 k ) )  =  k  <->  A. k  e.  U_  j  e.  A  B ( 2nd `  (
f `  k )
)  =  k ) )
5149, 50anbi12d 747 . . 3  |-  ( ph  ->  ( ( f :
U_ j  e.  {
j  e.  A  |  B  =/=  (/) } B -1-1-> U_ j  e.  { j  e.  A  |  B  =/=  (/) }  ( { j }  X.  B
)  /\  A. k  e.  U_  j  e.  {
j  e.  A  |  B  =/=  (/) } B ( 2nd `  ( f `
 k ) )  =  k )  <->  ( f : U_ j  e.  A  B -1-1-> U_ j  e.  A  ( { j }  X.  B )  /\  A. k  e.  U_  j  e.  A  B ( 2nd `  ( f `  k
) )  =  k ) ) )
5251exbidv 1850 . 2  |-  ( ph  ->  ( E. f ( f : U_ j  e.  { j  e.  A  |  B  =/=  (/) } B -1-1-> U_ j  e.  { j  e.  A  |  B  =/=  (/) }  ( { j }  X.  B
)  /\  A. k  e.  U_  j  e.  {
j  e.  A  |  B  =/=  (/) } B ( 2nd `  ( f `
 k ) )  =  k )  <->  E. f
( f : U_ j  e.  A  B -1-1-> U_ j  e.  A  ( { j }  X.  B )  /\  A. k  e.  U_  j  e.  A  B ( 2nd `  ( f `  k
) )  =  k ) ) )
5313, 52mpbid 222 1  |-  ( ph  ->  E. f ( f : U_ j  e.  A  B -1-1-> U_ j  e.  A  ( {
j }  X.  B
)  /\  A. k  e.  U_  j  e.  A  B ( 2nd `  (
f `  k )
)  =  k ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   T. wtru 1484   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916   _Vcvv 3200    \ cdif 3571    C_ wss 3574   (/)c0 3915   {csn 4177   U_ciun 4520    X. cxp 5112   -1-1->wf1 5885   ` cfv 5888   2ndc2nd 7167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497  ax-inf2 8538  ax-ac2 9285
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-en 7956  df-r1 8627  df-rank 8628  df-card 8765  df-ac 8939
This theorem is referenced by:  fsumiunle  29575  esumiun  30156
  Copyright terms: Public domain W3C validator