Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnsubadd2lem Structured version   Visualization version   Unicode version

Theorem ovnsubadd2lem 40859
Description:  (voln* `  X
) is subadditive. Proposition 115D (a)(iv) of [Fremlin1] p. 31 . The special case of the union of 2 sets. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovnsubadd2lem.x  |-  ( ph  ->  X  e.  Fin )
ovnsubadd2lem.a  |-  ( ph  ->  A  C_  ( RR  ^m  X ) )
ovnsubadd2lem.b  |-  ( ph  ->  B  C_  ( RR  ^m  X ) )
ovnsubadd2lem.c  |-  C  =  ( n  e.  NN  |->  if ( n  =  1 ,  A ,  if ( n  =  2 ,  B ,  (/) ) ) )
Assertion
Ref Expression
ovnsubadd2lem  |-  ( ph  ->  ( (voln* `  X ) `  ( A  u.  B )
)  <_  ( (
(voln* `  X ) `  A
) +e ( (voln* `  X ) `  B
) ) )
Distinct variable groups:    A, n    B, n    C, n    n, X    ph, n

Proof of Theorem ovnsubadd2lem
StepHypRef Expression
1 ovnsubadd2lem.x . . 3  |-  ( ph  ->  X  e.  Fin )
2 iftrue 4092 . . . . . . . 8  |-  ( n  =  1  ->  if ( n  =  1 ,  A ,  if ( n  =  2 ,  B ,  (/) ) )  =  A )
32adantl 482 . . . . . . 7  |-  ( (
ph  /\  n  = 
1 )  ->  if ( n  =  1 ,  A ,  if ( n  =  2 ,  B ,  (/) ) )  =  A )
4 ovexd 6680 . . . . . . . . . 10  |-  ( ph  ->  ( RR  ^m  X
)  e.  _V )
5 ovnsubadd2lem.a . . . . . . . . . 10  |-  ( ph  ->  A  C_  ( RR  ^m  X ) )
64, 5ssexd 4805 . . . . . . . . 9  |-  ( ph  ->  A  e.  _V )
76, 5elpwd 4167 . . . . . . . 8  |-  ( ph  ->  A  e.  ~P ( RR  ^m  X ) )
87adantr 481 . . . . . . 7  |-  ( (
ph  /\  n  = 
1 )  ->  A  e.  ~P ( RR  ^m  X ) )
93, 8eqeltrd 2701 . . . . . 6  |-  ( (
ph  /\  n  = 
1 )  ->  if ( n  =  1 ,  A ,  if ( n  =  2 ,  B ,  (/) ) )  e.  ~P ( RR 
^m  X ) )
109adantlr 751 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  n  =  1 )  ->  if ( n  =  1 ,  A ,  if ( n  =  2 ,  B ,  (/) ) )  e.  ~P ( RR 
^m  X ) )
11 simpl 473 . . . . . . . . . . 11  |-  ( ( -.  n  =  1  /\  n  =  2 )  ->  -.  n  =  1 )
1211iffalsed 4097 . . . . . . . . . 10  |-  ( ( -.  n  =  1  /\  n  =  2 )  ->  if (
n  =  1 ,  A ,  if ( n  =  2 ,  B ,  (/) ) )  =  if ( n  =  2 ,  B ,  (/) ) )
13 simpr 477 . . . . . . . . . . 11  |-  ( ( -.  n  =  1  /\  n  =  2 )  ->  n  = 
2 )
1413iftrued 4094 . . . . . . . . . 10  |-  ( ( -.  n  =  1  /\  n  =  2 )  ->  if (
n  =  2 ,  B ,  (/) )  =  B )
1512, 14eqtrd 2656 . . . . . . . . 9  |-  ( ( -.  n  =  1  /\  n  =  2 )  ->  if (
n  =  1 ,  A ,  if ( n  =  2 ,  B ,  (/) ) )  =  B )
1615adantll 750 . . . . . . . 8  |-  ( ( ( ph  /\  -.  n  =  1 )  /\  n  =  2 )  ->  if (
n  =  1 ,  A ,  if ( n  =  2 ,  B ,  (/) ) )  =  B )
17 ovnsubadd2lem.b . . . . . . . . . . 11  |-  ( ph  ->  B  C_  ( RR  ^m  X ) )
184, 17ssexd 4805 . . . . . . . . . 10  |-  ( ph  ->  B  e.  _V )
1918, 17elpwd 4167 . . . . . . . . 9  |-  ( ph  ->  B  e.  ~P ( RR  ^m  X ) )
2019ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  -.  n  =  1 )  /\  n  =  2 )  ->  B  e.  ~P ( RR  ^m  X
) )
2116, 20eqeltrd 2701 . . . . . . 7  |-  ( ( ( ph  /\  -.  n  =  1 )  /\  n  =  2 )  ->  if (
n  =  1 ,  A ,  if ( n  =  2 ,  B ,  (/) ) )  e.  ~P ( RR 
^m  X ) )
2221adantllr 755 . . . . . 6  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  -.  n  =  1 )  /\  n  =  2 )  ->  if ( n  =  1 ,  A ,  if ( n  =  2 ,  B ,  (/) ) )  e.  ~P ( RR 
^m  X ) )
23 simpl 473 . . . . . . . . . 10  |-  ( ( -.  n  =  1  /\  -.  n  =  2 )  ->  -.  n  =  1 )
2423iffalsed 4097 . . . . . . . . 9  |-  ( ( -.  n  =  1  /\  -.  n  =  2 )  ->  if ( n  =  1 ,  A ,  if ( n  =  2 ,  B ,  (/) ) )  =  if ( n  =  2 ,  B ,  (/) ) )
25 simpr 477 . . . . . . . . . 10  |-  ( ( -.  n  =  1  /\  -.  n  =  2 )  ->  -.  n  =  2 )
2625iffalsed 4097 . . . . . . . . 9  |-  ( ( -.  n  =  1  /\  -.  n  =  2 )  ->  if ( n  =  2 ,  B ,  (/) )  =  (/) )
2724, 26eqtrd 2656 . . . . . . . 8  |-  ( ( -.  n  =  1  /\  -.  n  =  2 )  ->  if ( n  =  1 ,  A ,  if ( n  =  2 ,  B ,  (/) ) )  =  (/) )
28 0elpw 4834 . . . . . . . . 9  |-  (/)  e.  ~P ( RR  ^m  X )
2928a1i 11 . . . . . . . 8  |-  ( ( -.  n  =  1  /\  -.  n  =  2 )  ->  (/)  e.  ~P ( RR  ^m  X ) )
3027, 29eqeltrd 2701 . . . . . . 7  |-  ( ( -.  n  =  1  /\  -.  n  =  2 )  ->  if ( n  =  1 ,  A ,  if ( n  =  2 ,  B ,  (/) ) )  e.  ~P ( RR 
^m  X ) )
3130adantll 750 . . . . . 6  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  -.  n  =  1 )  /\  -.  n  =  2 )  ->  if ( n  =  1 ,  A ,  if ( n  =  2 ,  B ,  (/) ) )  e.  ~P ( RR 
^m  X ) )
3222, 31pm2.61dan 832 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  -.  n  =  1 )  ->  if ( n  =  1 ,  A ,  if ( n  =  2 ,  B ,  (/) ) )  e.  ~P ( RR  ^m  X ) )
3310, 32pm2.61dan 832 . . . 4  |-  ( (
ph  /\  n  e.  NN )  ->  if ( n  =  1 ,  A ,  if ( n  =  2 ,  B ,  (/) ) )  e.  ~P ( RR 
^m  X ) )
34 ovnsubadd2lem.c . . . 4  |-  C  =  ( n  e.  NN  |->  if ( n  =  1 ,  A ,  if ( n  =  2 ,  B ,  (/) ) ) )
3533, 34fmptd 6385 . . 3  |-  ( ph  ->  C : NN --> ~P ( RR  ^m  X ) )
361, 35ovnsubadd 40786 . 2  |-  ( ph  ->  ( (voln* `  X ) `  U_ n  e.  NN  ( C `  n ) )  <_ 
(Σ^ `  ( n  e.  NN  |->  ( (voln* `  X ) `  ( C `  n )
) ) ) )
37 eldifi 3732 . . . . . . . . . . 11  |-  ( n  e.  ( NN  \  { 1 ,  2 } )  ->  n  e.  NN )
3837adantl 482 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( NN  \  { 1 ,  2 } ) )  ->  n  e.  NN )
39 eldifn 3733 . . . . . . . . . . . . . 14  |-  ( n  e.  ( NN  \  { 1 ,  2 } )  ->  -.  n  e.  { 1 ,  2 } )
40 vex 3203 . . . . . . . . . . . . . . . . 17  |-  n  e. 
_V
4140a1i 11 . . . . . . . . . . . . . . . 16  |-  ( -.  n  e.  { 1 ,  2 }  ->  n  e.  _V )
42 id 22 . . . . . . . . . . . . . . . 16  |-  ( -.  n  e.  { 1 ,  2 }  ->  -.  n  e.  { 1 ,  2 } )
4341, 42nelpr1 39262 . . . . . . . . . . . . . . 15  |-  ( -.  n  e.  { 1 ,  2 }  ->  n  =/=  1 )
4443neneqd 2799 . . . . . . . . . . . . . 14  |-  ( -.  n  e.  { 1 ,  2 }  ->  -.  n  =  1 )
4539, 44syl 17 . . . . . . . . . . . . 13  |-  ( n  e.  ( NN  \  { 1 ,  2 } )  ->  -.  n  =  1 )
4641, 42nelpr2 39261 . . . . . . . . . . . . . . 15  |-  ( -.  n  e.  { 1 ,  2 }  ->  n  =/=  2 )
4746neneqd 2799 . . . . . . . . . . . . . 14  |-  ( -.  n  e.  { 1 ,  2 }  ->  -.  n  =  2 )
4839, 47syl 17 . . . . . . . . . . . . 13  |-  ( n  e.  ( NN  \  { 1 ,  2 } )  ->  -.  n  =  2 )
4945, 48, 27syl2anc 693 . . . . . . . . . . . 12  |-  ( n  e.  ( NN  \  { 1 ,  2 } )  ->  if ( n  =  1 ,  A ,  if ( n  =  2 ,  B ,  (/) ) )  =  (/) )
50 0ex 4790 . . . . . . . . . . . . 13  |-  (/)  e.  _V
5150a1i 11 . . . . . . . . . . . 12  |-  ( n  e.  ( NN  \  { 1 ,  2 } )  ->  (/)  e.  _V )
5249, 51eqeltrd 2701 . . . . . . . . . . 11  |-  ( n  e.  ( NN  \  { 1 ,  2 } )  ->  if ( n  =  1 ,  A ,  if ( n  =  2 ,  B ,  (/) ) )  e.  _V )
5352adantl 482 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( NN  \  { 1 ,  2 } ) )  ->  if (
n  =  1 ,  A ,  if ( n  =  2 ,  B ,  (/) ) )  e.  _V )
5434fvmpt2 6291 . . . . . . . . . 10  |-  ( ( n  e.  NN  /\  if ( n  =  1 ,  A ,  if ( n  =  2 ,  B ,  (/) ) )  e.  _V )  -> 
( C `  n
)  =  if ( n  =  1 ,  A ,  if ( n  =  2 ,  B ,  (/) ) ) )
5538, 53, 54syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( NN  \  { 1 ,  2 } ) )  ->  ( C `  n )  =  if ( n  =  1 ,  A ,  if ( n  =  2 ,  B ,  (/) ) ) )
5649adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( NN  \  { 1 ,  2 } ) )  ->  if (
n  =  1 ,  A ,  if ( n  =  2 ,  B ,  (/) ) )  =  (/) )
5755, 56eqtrd 2656 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( NN  \  { 1 ,  2 } ) )  ->  ( C `  n )  =  (/) )
5857ralrimiva 2966 . . . . . . 7  |-  ( ph  ->  A. n  e.  ( NN  \  { 1 ,  2 } ) ( C `  n
)  =  (/) )
59 nfcv 2764 . . . . . . . 8  |-  F/_ n
( NN  \  {
1 ,  2 } )
6059iunxdif3 4606 . . . . . . 7  |-  ( A. n  e.  ( NN  \  { 1 ,  2 } ) ( C `
 n )  =  (/)  ->  U_ n  e.  ( NN  \  ( NN 
\  { 1 ,  2 } ) ) ( C `  n
)  =  U_ n  e.  NN  ( C `  n ) )
6158, 60syl 17 . . . . . 6  |-  ( ph  ->  U_ n  e.  ( NN  \  ( NN 
\  { 1 ,  2 } ) ) ( C `  n
)  =  U_ n  e.  NN  ( C `  n ) )
6261eqcomd 2628 . . . . 5  |-  ( ph  ->  U_ n  e.  NN  ( C `  n )  =  U_ n  e.  ( NN  \  ( NN  \  { 1 ,  2 } ) ) ( C `  n
) )
63 1nn 11031 . . . . . . . . . 10  |-  1  e.  NN
64 2nn 11185 . . . . . . . . . 10  |-  2  e.  NN
6563, 64pm3.2i 471 . . . . . . . . 9  |-  ( 1  e.  NN  /\  2  e.  NN )
66 prssi 4353 . . . . . . . . 9  |-  ( ( 1  e.  NN  /\  2  e.  NN )  ->  { 1 ,  2 }  C_  NN )
6765, 66ax-mp 5 . . . . . . . 8  |-  { 1 ,  2 }  C_  NN
68 dfss4 3858 . . . . . . . 8  |-  ( { 1 ,  2 } 
C_  NN  <->  ( NN  \ 
( NN  \  {
1 ,  2 } ) )  =  {
1 ,  2 } )
6967, 68mpbi 220 . . . . . . 7  |-  ( NN 
\  ( NN  \  { 1 ,  2 } ) )  =  { 1 ,  2 }
70 iuneq1 4534 . . . . . . 7  |-  ( ( NN  \  ( NN 
\  { 1 ,  2 } ) )  =  { 1 ,  2 }  ->  U_ n  e.  ( NN  \  ( NN  \  { 1 ,  2 } ) ) ( C `  n
)  =  U_ n  e.  { 1 ,  2 }  ( C `  n ) )
7169, 70ax-mp 5 . . . . . 6  |-  U_ n  e.  ( NN  \  ( NN  \  { 1 ,  2 } ) ) ( C `  n
)  =  U_ n  e.  { 1 ,  2 }  ( C `  n )
7271a1i 11 . . . . 5  |-  ( ph  ->  U_ n  e.  ( NN  \  ( NN 
\  { 1 ,  2 } ) ) ( C `  n
)  =  U_ n  e.  { 1 ,  2 }  ( C `  n ) )
73 fveq2 6191 . . . . . . . . 9  |-  ( n  =  1  ->  ( C `  n )  =  ( C ` 
1 ) )
74 fveq2 6191 . . . . . . . . 9  |-  ( n  =  2  ->  ( C `  n )  =  ( C ` 
2 ) )
7573, 74iunxprg 4607 . . . . . . . 8  |-  ( ( 1  e.  NN  /\  2  e.  NN )  ->  U_ n  e.  {
1 ,  2 }  ( C `  n
)  =  ( ( C `  1 )  u.  ( C ` 
2 ) ) )
7663, 64, 75mp2an 708 . . . . . . 7  |-  U_ n  e.  { 1 ,  2 }  ( C `  n )  =  ( ( C `  1
)  u.  ( C `
 2 ) )
7776a1i 11 . . . . . 6  |-  ( ph  ->  U_ n  e.  {
1 ,  2 }  ( C `  n
)  =  ( ( C `  1 )  u.  ( C ` 
2 ) ) )
7834a1i 11 . . . . . . . 8  |-  ( ph  ->  C  =  ( n  e.  NN  |->  if ( n  =  1 ,  A ,  if ( n  =  2 ,  B ,  (/) ) ) ) )
7963a1i 11 . . . . . . . 8  |-  ( ph  ->  1  e.  NN )
8078, 3, 79, 6fvmptd 6288 . . . . . . 7  |-  ( ph  ->  ( C `  1
)  =  A )
81 id 22 . . . . . . . . . . . . 13  |-  ( n  =  2  ->  n  =  2 )
82 1ne2 11240 . . . . . . . . . . . . . . 15  |-  1  =/=  2
8382necomi 2848 . . . . . . . . . . . . . 14  |-  2  =/=  1
8483a1i 11 . . . . . . . . . . . . 13  |-  ( n  =  2  ->  2  =/=  1 )
8581, 84eqnetrd 2861 . . . . . . . . . . . 12  |-  ( n  =  2  ->  n  =/=  1 )
8685neneqd 2799 . . . . . . . . . . 11  |-  ( n  =  2  ->  -.  n  =  1 )
8786iffalsed 4097 . . . . . . . . . 10  |-  ( n  =  2  ->  if ( n  =  1 ,  A ,  if ( n  =  2 ,  B ,  (/) ) )  =  if ( n  =  2 ,  B ,  (/) ) )
88 iftrue 4092 . . . . . . . . . 10  |-  ( n  =  2  ->  if ( n  =  2 ,  B ,  (/) )  =  B )
8987, 88eqtrd 2656 . . . . . . . . 9  |-  ( n  =  2  ->  if ( n  =  1 ,  A ,  if ( n  =  2 ,  B ,  (/) ) )  =  B )
9089adantl 482 . . . . . . . 8  |-  ( (
ph  /\  n  = 
2 )  ->  if ( n  =  1 ,  A ,  if ( n  =  2 ,  B ,  (/) ) )  =  B )
9164a1i 11 . . . . . . . 8  |-  ( ph  ->  2  e.  NN )
9278, 90, 91, 18fvmptd 6288 . . . . . . 7  |-  ( ph  ->  ( C `  2
)  =  B )
9380, 92uneq12d 3768 . . . . . 6  |-  ( ph  ->  ( ( C ` 
1 )  u.  ( C `  2 )
)  =  ( A  u.  B ) )
94 eqidd 2623 . . . . . 6  |-  ( ph  ->  ( A  u.  B
)  =  ( A  u.  B ) )
9577, 93, 943eqtrd 2660 . . . . 5  |-  ( ph  ->  U_ n  e.  {
1 ,  2 }  ( C `  n
)  =  ( A  u.  B ) )
9662, 72, 953eqtrd 2660 . . . 4  |-  ( ph  ->  U_ n  e.  NN  ( C `  n )  =  ( A  u.  B ) )
9796fveq2d 6195 . . 3  |-  ( ph  ->  ( (voln* `  X ) `  U_ n  e.  NN  ( C `  n ) )  =  ( (voln* `  X ) `  ( A  u.  B )
) )
98 nfv 1843 . . . . . 6  |-  F/ n ph
99 nnex 11026 . . . . . . 7  |-  NN  e.  _V
10099a1i 11 . . . . . 6  |-  ( ph  ->  NN  e.  _V )
10167a1i 11 . . . . . 6  |-  ( ph  ->  { 1 ,  2 }  C_  NN )
1021adantr 481 . . . . . . 7  |-  ( (
ph  /\  n  e.  { 1 ,  2 } )  ->  X  e.  Fin )
103 simpl 473 . . . . . . . 8  |-  ( (
ph  /\  n  e.  { 1 ,  2 } )  ->  ph )
104101sselda 3603 . . . . . . . 8  |-  ( (
ph  /\  n  e.  { 1 ,  2 } )  ->  n  e.  NN )
10535ffvelrnda 6359 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( C `
 n )  e. 
~P ( RR  ^m  X ) )
106 elpwi 4168 . . . . . . . . 9  |-  ( ( C `  n )  e.  ~P ( RR 
^m  X )  -> 
( C `  n
)  C_  ( RR  ^m  X ) )
107105, 106syl 17 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( C `
 n )  C_  ( RR  ^m  X ) )
108103, 104, 107syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  n  e.  { 1 ,  2 } )  ->  ( C `  n )  C_  ( RR  ^m  X ) )
109102, 108ovncl 40781 . . . . . 6  |-  ( (
ph  /\  n  e.  { 1 ,  2 } )  ->  ( (voln* `  X
) `  ( C `  n ) )  e.  ( 0 [,] +oo ) )
11057fveq2d 6195 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( NN  \  { 1 ,  2 } ) )  ->  ( (voln* `  X
) `  ( C `  n ) )  =  ( (voln* `  X ) `  (/) ) )
1111adantr 481 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( NN  \  { 1 ,  2 } ) )  ->  X  e.  Fin )
112111ovn0 40780 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( NN  \  { 1 ,  2 } ) )  ->  ( (voln* `  X
) `  (/) )  =  0 )
113110, 112eqtrd 2656 . . . . . 6  |-  ( (
ph  /\  n  e.  ( NN  \  { 1 ,  2 } ) )  ->  ( (voln* `  X
) `  ( C `  n ) )  =  0 )
11498, 100, 101, 109, 113sge0ss 40629 . . . . 5  |-  ( ph  ->  (Σ^ `  ( n  e.  {
1 ,  2 } 
|->  ( (voln* `  X ) `  ( C `  n )
) ) )  =  (Σ^ `  ( n  e.  NN  |->  ( (voln* `  X ) `  ( C `  n )
) ) ) )
115114eqcomd 2628 . . . 4  |-  ( ph  ->  (Σ^ `  ( n  e.  NN  |->  ( (voln* `  X ) `  ( C `  n )
) ) )  =  (Σ^ `  ( n  e.  {
1 ,  2 } 
|->  ( (voln* `  X ) `  ( C `  n )
) ) ) )
11680, 5eqsstrd 3639 . . . . . 6  |-  ( ph  ->  ( C `  1
)  C_  ( RR  ^m  X ) )
1171, 116ovncl 40781 . . . . 5  |-  ( ph  ->  ( (voln* `  X ) `  ( C `  1 )
)  e.  ( 0 [,] +oo ) )
11892, 17eqsstrd 3639 . . . . . 6  |-  ( ph  ->  ( C `  2
)  C_  ( RR  ^m  X ) )
1191, 118ovncl 40781 . . . . 5  |-  ( ph  ->  ( (voln* `  X ) `  ( C `  2 )
)  e.  ( 0 [,] +oo ) )
12073fveq2d 6195 . . . . 5  |-  ( n  =  1  ->  (
(voln* `  X ) `  ( C `  n )
)  =  ( (voln* `  X
) `  ( C `  1 ) ) )
12174fveq2d 6195 . . . . 5  |-  ( n  =  2  ->  (
(voln* `  X ) `  ( C `  n )
)  =  ( (voln* `  X
) `  ( C `  2 ) ) )
12282a1i 11 . . . . 5  |-  ( ph  ->  1  =/=  2 )
12379, 91, 117, 119, 120, 121, 122sge0pr 40611 . . . 4  |-  ( ph  ->  (Σ^ `  ( n  e.  {
1 ,  2 } 
|->  ( (voln* `  X ) `  ( C `  n )
) ) )  =  ( ( (voln* `  X ) `  ( C `  1 )
) +e ( (voln* `  X ) `  ( C `  2 )
) ) )
12480fveq2d 6195 . . . . 5  |-  ( ph  ->  ( (voln* `  X ) `  ( C `  1 )
)  =  ( (voln* `  X
) `  A )
)
12592fveq2d 6195 . . . . 5  |-  ( ph  ->  ( (voln* `  X ) `  ( C `  2 )
)  =  ( (voln* `  X
) `  B )
)
126124, 125oveq12d 6668 . . . 4  |-  ( ph  ->  ( ( (voln* `  X ) `  ( C `  1 )
) +e ( (voln* `  X ) `  ( C `  2 )
) )  =  ( ( (voln* `  X ) `  A
) +e ( (voln* `  X ) `  B
) ) )
127115, 123, 1263eqtrd 2660 . . 3  |-  ( ph  ->  (Σ^ `  ( n  e.  NN  |->  ( (voln* `  X ) `  ( C `  n )
) ) )  =  ( ( (voln* `  X ) `  A
) +e ( (voln* `  X ) `  B
) ) )
12897, 127breq12d 4666 . 2  |-  ( ph  ->  ( ( (voln* `  X ) `  U_ n  e.  NN  ( C `  n ) )  <_ 
(Σ^ `  ( n  e.  NN  |->  ( (voln* `  X ) `  ( C `  n )
) ) )  <->  ( (voln* `  X
) `  ( A  u.  B ) )  <_ 
( ( (voln* `  X ) `  A
) +e ( (voln* `  X ) `  B
) ) ) )
12936, 128mpbid 222 1  |-  ( ph  ->  ( (voln* `  X ) `  ( A  u.  B )
)  <_  ( (
(voln* `  X ) `  A
) +e ( (voln* `  X ) `  B
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200    \ cdif 3571    u. cun 3572    C_ wss 3574   (/)c0 3915   ifcif 4086   ~Pcpw 4158   {cpr 4179   U_ciun 4520   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   Fincfn 7955   RRcr 9935   0cc0 9936   1c1 9937    <_ cle 10075   NNcn 11020   2c2 11070   +ecxad 11944  Σ^csumge0 40579  voln*covoln 40750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-ac 8939  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-prod 14636  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-0g 16102  df-topgen 16104  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-subg 17591  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-ovol 23233  df-vol 23234  df-sumge0 40580  df-ovoln 40751
This theorem is referenced by:  ovnsubadd2  40860
  Copyright terms: Public domain W3C validator