Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  k0004lem1 Structured version   Visualization version   Unicode version

Theorem k0004lem1 38445
Description: Application of ssin 3835 to range of a function. (Contributed by RP, 1-Apr-2021.)
Assertion
Ref Expression
k0004lem1  |-  ( D  =  ( B  i^i  C )  ->  ( ( F : A --> B  /\  ( F " A ) 
C_  C )  <->  F : A
--> D ) )

Proof of Theorem k0004lem1
StepHypRef Expression
1 feq3 6028 . 2  |-  ( D  =  ( B  i^i  C )  ->  ( F : A --> D  <->  F : A
--> ( B  i^i  C
) ) )
2 fnima 6010 . . . . . . 7  |-  ( F  Fn  A  ->  ( F " A )  =  ran  F )
32sseq1d 3632 . . . . . 6  |-  ( F  Fn  A  ->  (
( F " A
)  C_  C  <->  ran  F  C_  C ) )
43anbi2d 740 . . . . 5  |-  ( F  Fn  A  ->  (
( ran  F  C_  B  /\  ( F " A
)  C_  C )  <->  ( ran  F  C_  B  /\  ran  F  C_  C
) ) )
5 ssin 3835 . . . . 5  |-  ( ( ran  F  C_  B  /\  ran  F  C_  C
)  <->  ran  F  C_  ( B  i^i  C ) )
64, 5syl6bb 276 . . . 4  |-  ( F  Fn  A  ->  (
( ran  F  C_  B  /\  ( F " A
)  C_  C )  <->  ran 
F  C_  ( B  i^i  C ) ) )
76pm5.32i 669 . . 3  |-  ( ( F  Fn  A  /\  ( ran  F  C_  B  /\  ( F " A
)  C_  C )
)  <->  ( F  Fn  A  /\  ran  F  C_  ( B  i^i  C ) ) )
8 df-f 5892 . . . . 5  |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
98anbi1i 731 . . . 4  |-  ( ( F : A --> B  /\  ( F " A ) 
C_  C )  <->  ( ( F  Fn  A  /\  ran  F  C_  B )  /\  ( F " A
)  C_  C )
)
10 anass 681 . . . 4  |-  ( ( ( F  Fn  A  /\  ran  F  C_  B
)  /\  ( F " A )  C_  C
)  <->  ( F  Fn  A  /\  ( ran  F  C_  B  /\  ( F
" A )  C_  C ) ) )
119, 10bitri 264 . . 3  |-  ( ( F : A --> B  /\  ( F " A ) 
C_  C )  <->  ( F  Fn  A  /\  ( ran  F  C_  B  /\  ( F " A ) 
C_  C ) ) )
12 df-f 5892 . . 3  |-  ( F : A --> ( B  i^i  C )  <->  ( F  Fn  A  /\  ran  F  C_  ( B  i^i  C
) ) )
137, 11, 123bitr4i 292 . 2  |-  ( ( F : A --> B  /\  ( F " A ) 
C_  C )  <->  F : A
--> ( B  i^i  C
) )
141, 13syl6rbbr 279 1  |-  ( D  =  ( B  i^i  C )  ->  ( ( F : A --> B  /\  ( F " A ) 
C_  C )  <->  F : A
--> D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    i^i cin 3573    C_ wss 3574   ran crn 5115   "cima 5117    Fn wfn 5883   -->wf 5884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-fun 5890  df-fn 5891  df-f 5892
This theorem is referenced by:  k0004lem2  38446
  Copyright terms: Public domain W3C validator