| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > keephyp | Structured version Visualization version Unicode version | ||
| Description: Transform a hypothesis
|
| Ref | Expression |
|---|---|
| keephyp.1 |
|
| keephyp.2 |
|
| keephyp.3 |
|
| keephyp.4 |
|
| Ref | Expression |
|---|---|
| keephyp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | keephyp.3 |
. 2
| |
| 2 | keephyp.4 |
. 2
| |
| 3 | keephyp.1 |
. . 3
| |
| 4 | keephyp.2 |
. . 3
| |
| 5 | 3, 4 | ifboth 4124 |
. 2
|
| 6 | 1, 2, 5 | mp2an 708 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-if 4087 |
| This theorem is referenced by: keepel 4155 boxcutc 7951 fin23lem13 9154 abvtrivd 18840 znf1o 19900 zntoslem 19905 dscmet 22377 sqff1o 24908 lgsne0 25060 dchrisum0flblem1 25197 dchrisum0flblem2 25198 |
| Copyright terms: Public domain | W3C validator |