MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znf1o Structured version   Visualization version   Unicode version

Theorem znf1o 19900
Description: The function  F enumerates all equivalence classes in ℤ/nℤ for each  n. When  n  = 
0,  ZZ  /  0 ZZ  =  ZZ  /  {
0 }  ~~  ZZ so we let  W  =  ZZ; otherwise  W  =  { 0 , 
... ,  n  - 
1 } enumerates all the equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by Mario Carneiro, 2-May-2016.) (Revised by AV, 13-Jun-2019.)
Hypotheses
Ref Expression
znf1o.y  |-  Y  =  (ℤ/n `  N )
znf1o.b  |-  B  =  ( Base `  Y
)
znf1o.f  |-  F  =  ( ( ZRHom `  Y )  |`  W )
znf1o.w  |-  W  =  if ( N  =  0 ,  ZZ , 
( 0..^ N ) )
Assertion
Ref Expression
znf1o  |-  ( N  e.  NN0  ->  F : W
-1-1-onto-> B )

Proof of Theorem znf1o
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 znf1o.y . . . . . . 7  |-  Y  =  (ℤ/n `  N )
21zncrng 19893 . . . . . 6  |-  ( N  e.  NN0  ->  Y  e. 
CRing )
3 crngring 18558 . . . . . 6  |-  ( Y  e.  CRing  ->  Y  e.  Ring )
4 eqid 2622 . . . . . . 7  |-  ( ZRHom `  Y )  =  ( ZRHom `  Y )
54zrhrhm 19860 . . . . . 6  |-  ( Y  e.  Ring  ->  ( ZRHom `  Y )  e.  (ring RingHom  Y
) )
6 zringbas 19824 . . . . . . 7  |-  ZZ  =  ( Base ` ring )
7 znf1o.b . . . . . . 7  |-  B  =  ( Base `  Y
)
86, 7rhmf 18726 . . . . . 6  |-  ( ( ZRHom `  Y )  e.  (ring RingHom  Y )  ->  ( ZRHom `  Y ) : ZZ --> B )
92, 3, 5, 84syl 19 . . . . 5  |-  ( N  e.  NN0  ->  ( ZRHom `  Y ) : ZZ --> B )
10 znf1o.w . . . . . 6  |-  W  =  if ( N  =  0 ,  ZZ , 
( 0..^ N ) )
11 sseq1 3626 . . . . . . 7  |-  ( ZZ  =  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )  ->  ( ZZ  C_  ZZ  <->  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )  C_  ZZ ) )
12 sseq1 3626 . . . . . . 7  |-  ( ( 0..^ N )  =  if ( N  =  0 ,  ZZ , 
( 0..^ N ) )  ->  ( (
0..^ N )  C_  ZZ 
<->  if ( N  =  0 ,  ZZ , 
( 0..^ N ) )  C_  ZZ )
)
13 ssid 3624 . . . . . . 7  |-  ZZ  C_  ZZ
14 elfzoelz 12470 . . . . . . . 8  |-  ( x  e.  ( 0..^ N )  ->  x  e.  ZZ )
1514ssriv 3607 . . . . . . 7  |-  ( 0..^ N )  C_  ZZ
1611, 12, 13, 15keephyp 4152 . . . . . 6  |-  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )  C_  ZZ
1710, 16eqsstri 3635 . . . . 5  |-  W  C_  ZZ
18 fssres 6070 . . . . 5  |-  ( ( ( ZRHom `  Y
) : ZZ --> B  /\  W  C_  ZZ )  -> 
( ( ZRHom `  Y )  |`  W ) : W --> B )
199, 17, 18sylancl 694 . . . 4  |-  ( N  e.  NN0  ->  ( ( ZRHom `  Y )  |`  W ) : W --> B )
20 znf1o.f . . . . 5  |-  F  =  ( ( ZRHom `  Y )  |`  W )
2120feq1i 6036 . . . 4  |-  ( F : W --> B  <->  ( ( ZRHom `  Y )  |`  W ) : W --> B )
2219, 21sylibr 224 . . 3  |-  ( N  e.  NN0  ->  F : W
--> B )
2320fveq1i 6192 . . . . . . . 8  |-  ( F `
 x )  =  ( ( ( ZRHom `  Y )  |`  W ) `
 x )
24 fvres 6207 . . . . . . . . 9  |-  ( x  e.  W  ->  (
( ( ZRHom `  Y )  |`  W ) `
 x )  =  ( ( ZRHom `  Y ) `  x
) )
2524ad2antrl 764 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
( ( ZRHom `  Y )  |`  W ) `
 x )  =  ( ( ZRHom `  Y ) `  x
) )
2623, 25syl5eq 2668 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  ( F `  x )  =  ( ( ZRHom `  Y ) `  x
) )
2720fveq1i 6192 . . . . . . . 8  |-  ( F `
 y )  =  ( ( ( ZRHom `  Y )  |`  W ) `
 y )
28 fvres 6207 . . . . . . . . 9  |-  ( y  e.  W  ->  (
( ( ZRHom `  Y )  |`  W ) `
 y )  =  ( ( ZRHom `  Y ) `  y
) )
2928ad2antll 765 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
( ( ZRHom `  Y )  |`  W ) `
 y )  =  ( ( ZRHom `  Y ) `  y
) )
3027, 29syl5eq 2668 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  ( F `  y )  =  ( ( ZRHom `  Y ) `  y
) )
3126, 30eqeq12d 2637 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
( F `  x
)  =  ( F `
 y )  <->  ( ( ZRHom `  Y ) `  x )  =  ( ( ZRHom `  Y
) `  y )
) )
32 simpl 473 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  N  e.  NN0 )
33 simprl 794 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  x  e.  W )
3417, 33sseldi 3601 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  x  e.  ZZ )
35 simprr 796 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  y  e.  W )
3617, 35sseldi 3601 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  y  e.  ZZ )
371, 4zndvds 19898 . . . . . . 7  |-  ( ( N  e.  NN0  /\  x  e.  ZZ  /\  y  e.  ZZ )  ->  (
( ( ZRHom `  Y ) `  x
)  =  ( ( ZRHom `  Y ) `  y )  <->  N  ||  (
x  -  y ) ) )
3832, 34, 36, 37syl3anc 1326 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
( ( ZRHom `  Y ) `  x
)  =  ( ( ZRHom `  Y ) `  y )  <->  N  ||  (
x  -  y ) ) )
39 elnn0 11294 . . . . . . 7  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
40 simpl 473 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  N  e.  NN )
41 simprl 794 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  x  e.  W )
4217, 41sseldi 3601 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  x  e.  ZZ )
43 simprr 796 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  y  e.  W )
4417, 43sseldi 3601 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  y  e.  ZZ )
45 moddvds 14991 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  x  e.  ZZ  /\  y  e.  ZZ )  ->  (
( x  mod  N
)  =  ( y  mod  N )  <->  N  ||  (
x  -  y ) ) )
4640, 42, 44, 45syl3anc 1326 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
( x  mod  N
)  =  ( y  mod  N )  <->  N  ||  (
x  -  y ) ) )
4742zred 11482 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  x  e.  RR )
48 nnrp 11842 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  N  e.  RR+ )
4948adantr 481 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  N  e.  RR+ )
50 nnne0 11053 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  N  =/=  0 )
51 ifnefalse 4098 . . . . . . . . . . . . . . . 16  |-  ( N  =/=  0  ->  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )  =  ( 0..^ N ) )
5250, 51syl 17 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )  =  ( 0..^ N ) )
5310, 52syl5eq 2668 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  W  =  ( 0..^ N ) )
5453adantr 481 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  W  =  ( 0..^ N ) )
5541, 54eleqtrd 2703 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  x  e.  ( 0..^ N ) )
56 elfzole1 12478 . . . . . . . . . . . 12  |-  ( x  e.  ( 0..^ N )  ->  0  <_  x )
5755, 56syl 17 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  0  <_  x )
58 elfzolt2 12479 . . . . . . . . . . . 12  |-  ( x  e.  ( 0..^ N )  ->  x  <  N )
5955, 58syl 17 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  x  <  N )
60 modid 12695 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR  /\  N  e.  RR+ )  /\  ( 0  <_  x  /\  x  <  N ) )  ->  ( x  mod  N )  =  x )
6147, 49, 57, 59, 60syl22anc 1327 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
x  mod  N )  =  x )
6244zred 11482 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  y  e.  RR )
6343, 54eleqtrd 2703 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  y  e.  ( 0..^ N ) )
64 elfzole1 12478 . . . . . . . . . . . 12  |-  ( y  e.  ( 0..^ N )  ->  0  <_  y )
6563, 64syl 17 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  0  <_  y )
66 elfzolt2 12479 . . . . . . . . . . . 12  |-  ( y  e.  ( 0..^ N )  ->  y  <  N )
6763, 66syl 17 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  y  <  N )
68 modid 12695 . . . . . . . . . . 11  |-  ( ( ( y  e.  RR  /\  N  e.  RR+ )  /\  ( 0  <_  y  /\  y  <  N ) )  ->  ( y  mod  N )  =  y )
6962, 49, 65, 67, 68syl22anc 1327 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
y  mod  N )  =  y )
7061, 69eqeq12d 2637 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
( x  mod  N
)  =  ( y  mod  N )  <->  x  =  y ) )
7146, 70bitr3d 270 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  ( N  ||  ( x  -  y )  <->  x  =  y ) )
72 simpl 473 . . . . . . . . . 10  |-  ( ( N  =  0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  N  =  0 )
7372breq1d 4663 . . . . . . . . 9  |-  ( ( N  =  0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  ( N  ||  ( x  -  y )  <->  0  ||  ( x  -  y
) ) )
74 id 22 . . . . . . . . . . . . 13  |-  ( N  =  0  ->  N  =  0 )
75 0nn0 11307 . . . . . . . . . . . . 13  |-  0  e.  NN0
7674, 75syl6eqel 2709 . . . . . . . . . . . 12  |-  ( N  =  0  ->  N  e.  NN0 )
7776, 34sylan 488 . . . . . . . . . . 11  |-  ( ( N  =  0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  x  e.  ZZ )
7876, 36sylan 488 . . . . . . . . . . 11  |-  ( ( N  =  0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  y  e.  ZZ )
7977, 78zsubcld 11487 . . . . . . . . . 10  |-  ( ( N  =  0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
x  -  y )  e.  ZZ )
80 0dvds 15002 . . . . . . . . . 10  |-  ( ( x  -  y )  e.  ZZ  ->  (
0  ||  ( x  -  y )  <->  ( x  -  y )  =  0 ) )
8179, 80syl 17 . . . . . . . . 9  |-  ( ( N  =  0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
0  ||  ( x  -  y )  <->  ( x  -  y )  =  0 ) )
8277zcnd 11483 . . . . . . . . . 10  |-  ( ( N  =  0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  x  e.  CC )
8378zcnd 11483 . . . . . . . . . 10  |-  ( ( N  =  0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  y  e.  CC )
8482, 83subeq0ad 10402 . . . . . . . . 9  |-  ( ( N  =  0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
( x  -  y
)  =  0  <->  x  =  y ) )
8573, 81, 843bitrd 294 . . . . . . . 8  |-  ( ( N  =  0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  ( N  ||  ( x  -  y )  <->  x  =  y ) )
8671, 85jaoian 824 . . . . . . 7  |-  ( ( ( N  e.  NN  \/  N  =  0
)  /\  ( x  e.  W  /\  y  e.  W ) )  -> 
( N  ||  (
x  -  y )  <-> 
x  =  y ) )
8739, 86sylanb 489 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  ( N  ||  ( x  -  y )  <->  x  =  y ) )
8831, 38, 873bitrd 294 . . . . 5  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
( F `  x
)  =  ( F `
 y )  <->  x  =  y ) )
8988biimpd 219 . . . 4  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
)
9089ralrimivva 2971 . . 3  |-  ( N  e.  NN0  ->  A. x  e.  W  A. y  e.  W  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) )
91 dff13 6512 . . 3  |-  ( F : W -1-1-> B  <->  ( F : W --> B  /\  A. x  e.  W  A. y  e.  W  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) )
9222, 90, 91sylanbrc 698 . 2  |-  ( N  e.  NN0  ->  F : W -1-1-> B )
93 zmodfzo 12693 . . . . . . . . . . . 12  |-  ( ( z  e.  ZZ  /\  N  e.  NN )  ->  ( z  mod  N
)  e.  ( 0..^ N ) )
9493ancoms 469 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  ( z  mod  N
)  e.  ( 0..^ N ) )
9553adantr 481 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  W  =  ( 0..^ N ) )
9694, 95eleqtrrd 2704 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  ( z  mod  N
)  e.  W )
97 zre 11381 . . . . . . . . . . . . . 14  |-  ( z  e.  ZZ  ->  z  e.  RR )
98 modabs2 12704 . . . . . . . . . . . . . 14  |-  ( ( z  e.  RR  /\  N  e.  RR+ )  -> 
( ( z  mod 
N )  mod  N
)  =  ( z  mod  N ) )
9997, 48, 98syl2anr 495 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  ( ( z  mod 
N )  mod  N
)  =  ( z  mod  N ) )
100 simpl 473 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  N  e.  NN )
10115, 94sseldi 3601 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  ( z  mod  N
)  e.  ZZ )
102 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  z  e.  ZZ )
103 moddvds 14991 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( z  mod  N
)  e.  ZZ  /\  z  e.  ZZ )  ->  ( ( ( z  mod  N )  mod 
N )  =  ( z  mod  N )  <-> 
N  ||  ( (
z  mod  N )  -  z ) ) )
104100, 101, 102, 103syl3anc 1326 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  ( ( ( z  mod  N )  mod 
N )  =  ( z  mod  N )  <-> 
N  ||  ( (
z  mod  N )  -  z ) ) )
10599, 104mpbid 222 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  N  ||  ( ( z  mod  N )  -  z ) )
106 nnnn0 11299 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  N  e.  NN0 )
107106adantr 481 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  N  e.  NN0 )
1081, 4zndvds 19898 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  ( z  mod  N
)  e.  ZZ  /\  z  e.  ZZ )  ->  ( ( ( ZRHom `  Y ) `  (
z  mod  N )
)  =  ( ( ZRHom `  Y ) `  z )  <->  N  ||  (
( z  mod  N
)  -  z ) ) )
109107, 101, 102, 108syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  ( ( ( ZRHom `  Y ) `  (
z  mod  N )
)  =  ( ( ZRHom `  Y ) `  z )  <->  N  ||  (
( z  mod  N
)  -  z ) ) )
110105, 109mpbird 247 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  ( ( ZRHom `  Y ) `  (
z  mod  N )
)  =  ( ( ZRHom `  Y ) `  z ) )
111110eqcomd 2628 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  ( ( ZRHom `  Y ) `  z
)  =  ( ( ZRHom `  Y ) `  ( z  mod  N
) ) )
112 fveq2 6191 . . . . . . . . . . . 12  |-  ( y  =  ( z  mod 
N )  ->  (
( ZRHom `  Y
) `  y )  =  ( ( ZRHom `  Y ) `  (
z  mod  N )
) )
113112eqeq2d 2632 . . . . . . . . . . 11  |-  ( y  =  ( z  mod 
N )  ->  (
( ( ZRHom `  Y ) `  z
)  =  ( ( ZRHom `  Y ) `  y )  <->  ( ( ZRHom `  Y ) `  z )  =  ( ( ZRHom `  Y
) `  ( z  mod  N ) ) ) )
114113rspcev 3309 . . . . . . . . . 10  |-  ( ( ( z  mod  N
)  e.  W  /\  ( ( ZRHom `  Y ) `  z
)  =  ( ( ZRHom `  Y ) `  ( z  mod  N
) ) )  ->  E. y  e.  W  ( ( ZRHom `  Y ) `  z
)  =  ( ( ZRHom `  Y ) `  y ) )
11596, 111, 114syl2anc 693 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  E. y  e.  W  ( ( ZRHom `  Y ) `  z
)  =  ( ( ZRHom `  Y ) `  y ) )
116 iftrue 4092 . . . . . . . . . . . . 13  |-  ( N  =  0  ->  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )  =  ZZ )
117116eleq2d 2687 . . . . . . . . . . . 12  |-  ( N  =  0  ->  (
z  e.  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )  <->  z  e.  ZZ ) )
118117biimpar 502 . . . . . . . . . . 11  |-  ( ( N  =  0  /\  z  e.  ZZ )  ->  z  e.  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) )
119118, 10syl6eleqr 2712 . . . . . . . . . 10  |-  ( ( N  =  0  /\  z  e.  ZZ )  ->  z  e.  W
)
120 eqidd 2623 . . . . . . . . . 10  |-  ( ( N  =  0  /\  z  e.  ZZ )  ->  ( ( ZRHom `  Y ) `  z
)  =  ( ( ZRHom `  Y ) `  z ) )
121 fveq2 6191 . . . . . . . . . . . 12  |-  ( y  =  z  ->  (
( ZRHom `  Y
) `  y )  =  ( ( ZRHom `  Y ) `  z
) )
122121eqeq2d 2632 . . . . . . . . . . 11  |-  ( y  =  z  ->  (
( ( ZRHom `  Y ) `  z
)  =  ( ( ZRHom `  Y ) `  y )  <->  ( ( ZRHom `  Y ) `  z )  =  ( ( ZRHom `  Y
) `  z )
) )
123122rspcev 3309 . . . . . . . . . 10  |-  ( ( z  e.  W  /\  ( ( ZRHom `  Y ) `  z
)  =  ( ( ZRHom `  Y ) `  z ) )  ->  E. y  e.  W  ( ( ZRHom `  Y ) `  z
)  =  ( ( ZRHom `  Y ) `  y ) )
124119, 120, 123syl2anc 693 . . . . . . . . 9  |-  ( ( N  =  0  /\  z  e.  ZZ )  ->  E. y  e.  W  ( ( ZRHom `  Y ) `  z
)  =  ( ( ZRHom `  Y ) `  y ) )
125115, 124jaoian 824 . . . . . . . 8  |-  ( ( ( N  e.  NN  \/  N  =  0
)  /\  z  e.  ZZ )  ->  E. y  e.  W  ( ( ZRHom `  Y ) `  z )  =  ( ( ZRHom `  Y
) `  y )
)
12639, 125sylanb 489 . . . . . . 7  |-  ( ( N  e.  NN0  /\  z  e.  ZZ )  ->  E. y  e.  W  ( ( ZRHom `  Y ) `  z
)  =  ( ( ZRHom `  Y ) `  y ) )
12727, 28syl5eq 2668 . . . . . . . . 9  |-  ( y  e.  W  ->  ( F `  y )  =  ( ( ZRHom `  Y ) `  y
) )
128127eqeq2d 2632 . . . . . . . 8  |-  ( y  e.  W  ->  (
( ( ZRHom `  Y ) `  z
)  =  ( F `
 y )  <->  ( ( ZRHom `  Y ) `  z )  =  ( ( ZRHom `  Y
) `  y )
) )
129128rexbiia 3040 . . . . . . 7  |-  ( E. y  e.  W  ( ( ZRHom `  Y
) `  z )  =  ( F `  y )  <->  E. y  e.  W  ( ( ZRHom `  Y ) `  z )  =  ( ( ZRHom `  Y
) `  y )
)
130126, 129sylibr 224 . . . . . 6  |-  ( ( N  e.  NN0  /\  z  e.  ZZ )  ->  E. y  e.  W  ( ( ZRHom `  Y ) `  z
)  =  ( F `
 y ) )
131130ralrimiva 2966 . . . . 5  |-  ( N  e.  NN0  ->  A. z  e.  ZZ  E. y  e.  W  ( ( ZRHom `  Y ) `  z
)  =  ( F `
 y ) )
1321, 7, 4znzrhfo 19896 . . . . . 6  |-  ( N  e.  NN0  ->  ( ZRHom `  Y ) : ZZ -onto-> B )
133 fofn 6117 . . . . . 6  |-  ( ( ZRHom `  Y ) : ZZ -onto-> B  ->  ( ZRHom `  Y )  Fn  ZZ )
134 eqeq1 2626 . . . . . . . 8  |-  ( x  =  ( ( ZRHom `  Y ) `  z
)  ->  ( x  =  ( F `  y )  <->  ( ( ZRHom `  Y ) `  z )  =  ( F `  y ) ) )
135134rexbidv 3052 . . . . . . 7  |-  ( x  =  ( ( ZRHom `  Y ) `  z
)  ->  ( E. y  e.  W  x  =  ( F `  y )  <->  E. y  e.  W  ( ( ZRHom `  Y ) `  z )  =  ( F `  y ) ) )
136135ralrn 6362 . . . . . 6  |-  ( ( ZRHom `  Y )  Fn  ZZ  ->  ( A. x  e.  ran  ( ZRHom `  Y ) E. y  e.  W  x  =  ( F `  y )  <->  A. z  e.  ZZ  E. y  e.  W  ( ( ZRHom `  Y
) `  z )  =  ( F `  y ) ) )
137132, 133, 1363syl 18 . . . . 5  |-  ( N  e.  NN0  ->  ( A. x  e.  ran  ( ZRHom `  Y ) E. y  e.  W  x  =  ( F `  y )  <->  A. z  e.  ZZ  E. y  e.  W  ( ( ZRHom `  Y
) `  z )  =  ( F `  y ) ) )
138131, 137mpbird 247 . . . 4  |-  ( N  e.  NN0  ->  A. x  e.  ran  ( ZRHom `  Y ) E. y  e.  W  x  =  ( F `  y ) )
139 forn 6118 . . . . . 6  |-  ( ( ZRHom `  Y ) : ZZ -onto-> B  ->  ran  ( ZRHom `  Y )  =  B )
140132, 139syl 17 . . . . 5  |-  ( N  e.  NN0  ->  ran  ( ZRHom `  Y )  =  B )
141140raleqdv 3144 . . . 4  |-  ( N  e.  NN0  ->  ( A. x  e.  ran  ( ZRHom `  Y ) E. y  e.  W  x  =  ( F `  y )  <->  A. x  e.  B  E. y  e.  W  x  =  ( F `  y ) ) )
142138, 141mpbid 222 . . 3  |-  ( N  e.  NN0  ->  A. x  e.  B  E. y  e.  W  x  =  ( F `  y ) )
143 dffo3 6374 . . 3  |-  ( F : W -onto-> B  <->  ( F : W --> B  /\  A. x  e.  B  E. y  e.  W  x  =  ( F `  y ) ) )
14422, 142, 143sylanbrc 698 . 2  |-  ( N  e.  NN0  ->  F : W -onto-> B )
145 df-f1o 5895 . 2  |-  ( F : W -1-1-onto-> B  <->  ( F : W -1-1-> B  /\  F : W -onto-> B ) )
14692, 144, 145sylanbrc 698 1  |-  ( N  e.  NN0  ->  F : W
-1-1-onto-> B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    C_ wss 3574   ifcif 4086   class class class wbr 4653   ran crn 5115    |` cres 5116    Fn wfn 5883   -->wf 5884   -1-1->wf1 5885   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   NN0cn0 11292   ZZcz 11377   RR+crp 11832  ..^cfzo 12465    mod cmo 12668    || cdvds 14983   Basecbs 15857   Ringcrg 18547   CRingccrg 18548   RingHom crh 18712  ℤringzring 19818   ZRHomczrh 19848  ℤ/nczn 19851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-dvds 14984  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-imas 16168  df-qus 16169  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-nsg 17592  df-eqg 17593  df-ghm 17658  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-rnghom 18715  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-sra 19172  df-rgmod 19173  df-lidl 19174  df-rsp 19175  df-2idl 19232  df-cnfld 19747  df-zring 19819  df-zrh 19852  df-zn 19855
This theorem is referenced by:  zzngim  19901  znleval  19903  zntoslem  19905  znhash  19907  znunithash  19913  dchrisumlem1  25178
  Copyright terms: Public domain W3C validator