MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dscmet Structured version   Visualization version   Unicode version

Theorem dscmet 22377
Description: The discrete metric on any set  X. Definition 1.1-8 of [Kreyszig] p. 8. (Contributed by FL, 12-Oct-2006.)
Hypothesis
Ref Expression
dscmet.1  |-  D  =  ( x  e.  X ,  y  e.  X  |->  if ( x  =  y ,  0 ,  1 ) )
Assertion
Ref Expression
dscmet  |-  ( X  e.  V  ->  D  e.  ( Met `  X
) )
Distinct variable group:    x, y, X
Allowed substitution hints:    D( x, y)    V( x, y)

Proof of Theorem dscmet
Dummy variables  v  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0re 10040 . . . . . 6  |-  0  e.  RR
2 1re 10039 . . . . . 6  |-  1  e.  RR
31, 2keepel 4155 . . . . 5  |-  if ( x  =  y ,  0 ,  1 )  e.  RR
43rgen2w 2925 . . . 4  |-  A. x  e.  X  A. y  e.  X  if (
x  =  y ,  0 ,  1 )  e.  RR
5 dscmet.1 . . . . 5  |-  D  =  ( x  e.  X ,  y  e.  X  |->  if ( x  =  y ,  0 ,  1 ) )
65fmpt2 7237 . . . 4  |-  ( A. x  e.  X  A. y  e.  X  if ( x  =  y ,  0 ,  1 )  e.  RR  <->  D :
( X  X.  X
) --> RR )
74, 6mpbi 220 . . 3  |-  D :
( X  X.  X
) --> RR
8 equequ1 1952 . . . . . . . . 9  |-  ( x  =  w  ->  (
x  =  y  <->  w  =  y ) )
98ifbid 4108 . . . . . . . 8  |-  ( x  =  w  ->  if ( x  =  y ,  0 ,  1 )  =  if ( w  =  y ,  0 ,  1 ) )
10 equequ2 1953 . . . . . . . . 9  |-  ( y  =  v  ->  (
w  =  y  <->  w  =  v ) )
1110ifbid 4108 . . . . . . . 8  |-  ( y  =  v  ->  if ( w  =  y ,  0 ,  1 )  =  if ( w  =  v ,  0 ,  1 ) )
12 0nn0 11307 . . . . . . . . . 10  |-  0  e.  NN0
13 1nn0 11308 . . . . . . . . . 10  |-  1  e.  NN0
1412, 13keepel 4155 . . . . . . . . 9  |-  if ( w  =  v ,  0 ,  1 )  e.  NN0
1514elexi 3213 . . . . . . . 8  |-  if ( w  =  v ,  0 ,  1 )  e.  _V
169, 11, 5, 15ovmpt2 6796 . . . . . . 7  |-  ( ( w  e.  X  /\  v  e.  X )  ->  ( w D v )  =  if ( w  =  v ,  0 ,  1 ) )
1716eqeq1d 2624 . . . . . 6  |-  ( ( w  e.  X  /\  v  e.  X )  ->  ( ( w D v )  =  0  <-> 
if ( w  =  v ,  0 ,  1 )  =  0 ) )
18 iffalse 4095 . . . . . . . . . 10  |-  ( -.  w  =  v  ->  if ( w  =  v ,  0 ,  1 )  =  1 )
19 ax-1ne0 10005 . . . . . . . . . . 11  |-  1  =/=  0
2019a1i 11 . . . . . . . . . 10  |-  ( -.  w  =  v  -> 
1  =/=  0 )
2118, 20eqnetrd 2861 . . . . . . . . 9  |-  ( -.  w  =  v  ->  if ( w  =  v ,  0 ,  1 )  =/=  0 )
2221neneqd 2799 . . . . . . . 8  |-  ( -.  w  =  v  ->  -.  if ( w  =  v ,  0 ,  1 )  =  0 )
2322con4i 113 . . . . . . 7  |-  ( if ( w  =  v ,  0 ,  1 )  =  0  ->  w  =  v )
24 iftrue 4092 . . . . . . 7  |-  ( w  =  v  ->  if ( w  =  v ,  0 ,  1 )  =  0 )
2523, 24impbii 199 . . . . . 6  |-  ( if ( w  =  v ,  0 ,  1 )  =  0  <->  w  =  v )
2617, 25syl6bb 276 . . . . 5  |-  ( ( w  e.  X  /\  v  e.  X )  ->  ( ( w D v )  =  0  <-> 
w  =  v ) )
2712, 13keepel 4155 . . . . . . . . . . 11  |-  if ( u  =  w ,  0 ,  1 )  e.  NN0
2812, 13keepel 4155 . . . . . . . . . . 11  |-  if ( u  =  v ,  0 ,  1 )  e.  NN0
2927, 28nn0addcli 11330 . . . . . . . . . 10  |-  ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  e.  NN0
30 elnn0 11294 . . . . . . . . . 10  |-  ( ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  e.  NN0  <->  (
( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  e.  NN  \/  ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  =  0 ) )
3129, 30mpbi 220 . . . . . . . . 9  |-  ( ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  e.  NN  \/  ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  =  0 )
32 breq1 4656 . . . . . . . . . . . 12  |-  ( 0  =  if ( w  =  v ,  0 ,  1 )  -> 
( 0  <_  1  <->  if ( w  =  v ,  0 ,  1 )  <_  1 ) )
33 breq1 4656 . . . . . . . . . . . 12  |-  ( 1  =  if ( w  =  v ,  0 ,  1 )  -> 
( 1  <_  1  <->  if ( w  =  v ,  0 ,  1 )  <_  1 ) )
34 0le1 10551 . . . . . . . . . . . 12  |-  0  <_  1
352leidi 10562 . . . . . . . . . . . 12  |-  1  <_  1
3632, 33, 34, 35keephyp 4152 . . . . . . . . . . 11  |-  if ( w  =  v ,  0 ,  1 )  <_  1
37 nnge1 11046 . . . . . . . . . . 11  |-  ( ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  e.  NN  ->  1  <_  ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) ) )
3814nn0rei 11303 . . . . . . . . . . . 12  |-  if ( w  =  v ,  0 ,  1 )  e.  RR
3929nn0rei 11303 . . . . . . . . . . . 12  |-  ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  e.  RR
4038, 2, 39letri 10166 . . . . . . . . . . 11  |-  ( ( if ( w  =  v ,  0 ,  1 )  <_  1  /\  1  <_  ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) ) )  ->  if ( w  =  v ,  0 ,  1 )  <_  ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) ) )
4136, 37, 40sylancr 695 . . . . . . . . . 10  |-  ( ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  e.  NN  ->  if ( w  =  v ,  0 ,  1 )  <_  ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) ) )
4227nn0ge0i 11320 . . . . . . . . . . . . 13  |-  0  <_  if ( u  =  w ,  0 ,  1 )
4328nn0ge0i 11320 . . . . . . . . . . . . 13  |-  0  <_  if ( u  =  v ,  0 ,  1 )
4427nn0rei 11303 . . . . . . . . . . . . . 14  |-  if ( u  =  w ,  0 ,  1 )  e.  RR
4528nn0rei 11303 . . . . . . . . . . . . . 14  |-  if ( u  =  v ,  0 ,  1 )  e.  RR
4644, 45add20i 10571 . . . . . . . . . . . . 13  |-  ( ( 0  <_  if (
u  =  w ,  0 ,  1 )  /\  0  <_  if ( u  =  v ,  0 ,  1 ) )  ->  (
( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  =  0  <->  ( if ( u  =  w ,  0 ,  1 )  =  0  /\  if ( u  =  v ,  0 ,  1 )  =  0 ) ) )
4742, 43, 46mp2an 708 . . . . . . . . . . . 12  |-  ( ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  =  0  <-> 
( if ( u  =  w ,  0 ,  1 )  =  0  /\  if ( u  =  v ,  0 ,  1 )  =  0 ) )
48 equequ2 1953 . . . . . . . . . . . . . . . . . . 19  |-  ( v  =  w  ->  (
u  =  v  <->  u  =  w ) )
4948ifbid 4108 . . . . . . . . . . . . . . . . . 18  |-  ( v  =  w  ->  if ( u  =  v ,  0 ,  1 )  =  if ( u  =  w ,  0 ,  1 ) )
5049eqeq1d 2624 . . . . . . . . . . . . . . . . 17  |-  ( v  =  w  ->  ( if ( u  =  v ,  0 ,  1 )  =  0  <->  if ( u  =  w ,  0 ,  1 )  =  0 ) )
5150, 48bibi12d 335 . . . . . . . . . . . . . . . 16  |-  ( v  =  w  ->  (
( if ( u  =  v ,  0 ,  1 )  =  0  <->  u  =  v
)  <->  ( if ( u  =  w ,  0 ,  1 )  =  0  <->  u  =  w ) ) )
52 equequ1 1952 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  =  u  ->  (
w  =  v  <->  u  =  v ) )
5352ifbid 4108 . . . . . . . . . . . . . . . . . . 19  |-  ( w  =  u  ->  if ( w  =  v ,  0 ,  1 )  =  if ( u  =  v ,  0 ,  1 ) )
5453eqeq1d 2624 . . . . . . . . . . . . . . . . . 18  |-  ( w  =  u  ->  ( if ( w  =  v ,  0 ,  1 )  =  0  <->  if ( u  =  v ,  0 ,  1 )  =  0 ) )
5554, 52bibi12d 335 . . . . . . . . . . . . . . . . 17  |-  ( w  =  u  ->  (
( if ( w  =  v ,  0 ,  1 )  =  0  <->  w  =  v
)  <->  ( if ( u  =  v ,  0 ,  1 )  =  0  <->  u  =  v ) ) )
5655, 25chvarv 2263 . . . . . . . . . . . . . . . 16  |-  ( if ( u  =  v ,  0 ,  1 )  =  0  <->  u  =  v )
5751, 56chvarv 2263 . . . . . . . . . . . . . . 15  |-  ( if ( u  =  w ,  0 ,  1 )  =  0  <->  u  =  w )
58 eqtr2 2642 . . . . . . . . . . . . . . 15  |-  ( ( u  =  w  /\  u  =  v )  ->  w  =  v )
5957, 56, 58syl2anb 496 . . . . . . . . . . . . . 14  |-  ( ( if ( u  =  w ,  0 ,  1 )  =  0  /\  if ( u  =  v ,  0 ,  1 )  =  0 )  ->  w  =  v )
6059iftrued 4094 . . . . . . . . . . . . 13  |-  ( ( if ( u  =  w ,  0 ,  1 )  =  0  /\  if ( u  =  v ,  0 ,  1 )  =  0 )  ->  if ( w  =  v ,  0 ,  1 )  =  0 )
611leidi 10562 . . . . . . . . . . . . 13  |-  0  <_  0
6260, 61syl6eqbr 4692 . . . . . . . . . . . 12  |-  ( ( if ( u  =  w ,  0 ,  1 )  =  0  /\  if ( u  =  v ,  0 ,  1 )  =  0 )  ->  if ( w  =  v ,  0 ,  1 )  <_  0 )
6347, 62sylbi 207 . . . . . . . . . . 11  |-  ( ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  =  0  ->  if ( w  =  v ,  0 ,  1 )  <_ 
0 )
64 id 22 . . . . . . . . . . 11  |-  ( ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  =  0  ->  ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  =  0 )
6563, 64breqtrrd 4681 . . . . . . . . . 10  |-  ( ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  =  0  ->  if ( w  =  v ,  0 ,  1 )  <_ 
( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) ) )
6641, 65jaoi 394 . . . . . . . . 9  |-  ( ( ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  e.  NN  \/  ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  =  0 )  ->  if ( w  =  v ,  0 ,  1 )  <_ 
( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) ) )
6731, 66mp1i 13 . . . . . . . 8  |-  ( ( u  e.  X  /\  ( w  e.  X  /\  v  e.  X
) )  ->  if ( w  =  v ,  0 ,  1 )  <_  ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) ) )
6816adantl 482 . . . . . . . 8  |-  ( ( u  e.  X  /\  ( w  e.  X  /\  v  e.  X
) )  ->  (
w D v )  =  if ( w  =  v ,  0 ,  1 ) )
69 eqeq12 2635 . . . . . . . . . . . 12  |-  ( ( x  =  u  /\  y  =  w )  ->  ( x  =  y  <-> 
u  =  w ) )
7069ifbid 4108 . . . . . . . . . . 11  |-  ( ( x  =  u  /\  y  =  w )  ->  if ( x  =  y ,  0 ,  1 )  =  if ( u  =  w ,  0 ,  1 ) )
7127elexi 3213 . . . . . . . . . . 11  |-  if ( u  =  w ,  0 ,  1 )  e.  _V
7270, 5, 71ovmpt2a 6791 . . . . . . . . . 10  |-  ( ( u  e.  X  /\  w  e.  X )  ->  ( u D w )  =  if ( u  =  w ,  0 ,  1 ) )
7372adantrr 753 . . . . . . . . 9  |-  ( ( u  e.  X  /\  ( w  e.  X  /\  v  e.  X
) )  ->  (
u D w )  =  if ( u  =  w ,  0 ,  1 ) )
74 eqeq12 2635 . . . . . . . . . . . 12  |-  ( ( x  =  u  /\  y  =  v )  ->  ( x  =  y  <-> 
u  =  v ) )
7574ifbid 4108 . . . . . . . . . . 11  |-  ( ( x  =  u  /\  y  =  v )  ->  if ( x  =  y ,  0 ,  1 )  =  if ( u  =  v ,  0 ,  1 ) )
7628elexi 3213 . . . . . . . . . . 11  |-  if ( u  =  v ,  0 ,  1 )  e.  _V
7775, 5, 76ovmpt2a 6791 . . . . . . . . . 10  |-  ( ( u  e.  X  /\  v  e.  X )  ->  ( u D v )  =  if ( u  =  v ,  0 ,  1 ) )
7877adantrl 752 . . . . . . . . 9  |-  ( ( u  e.  X  /\  ( w  e.  X  /\  v  e.  X
) )  ->  (
u D v )  =  if ( u  =  v ,  0 ,  1 ) )
7973, 78oveq12d 6668 . . . . . . . 8  |-  ( ( u  e.  X  /\  ( w  e.  X  /\  v  e.  X
) )  ->  (
( u D w )  +  ( u D v ) )  =  ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) ) )
8067, 68, 793brtr4d 4685 . . . . . . 7  |-  ( ( u  e.  X  /\  ( w  e.  X  /\  v  e.  X
) )  ->  (
w D v )  <_  ( ( u D w )  +  ( u D v ) ) )
8180expcom 451 . . . . . 6  |-  ( ( w  e.  X  /\  v  e.  X )  ->  ( u  e.  X  ->  ( w D v )  <_  ( (
u D w )  +  ( u D v ) ) ) )
8281ralrimiv 2965 . . . . 5  |-  ( ( w  e.  X  /\  v  e.  X )  ->  A. u  e.  X  ( w D v )  <_  ( (
u D w )  +  ( u D v ) ) )
8326, 82jca 554 . . . 4  |-  ( ( w  e.  X  /\  v  e.  X )  ->  ( ( ( w D v )  =  0  <->  w  =  v
)  /\  A. u  e.  X  ( w D v )  <_ 
( ( u D w )  +  ( u D v ) ) ) )
8483rgen2a 2977 . . 3  |-  A. w  e.  X  A. v  e.  X  ( (
( w D v )  =  0  <->  w  =  v )  /\  A. u  e.  X  ( w D v )  <_  ( ( u D w )  +  ( u D v ) ) )
857, 84pm3.2i 471 . 2  |-  ( D : ( X  X.  X ) --> RR  /\  A. w  e.  X  A. v  e.  X  (
( ( w D v )  =  0  <-> 
w  =  v )  /\  A. u  e.  X  ( w D v )  <_  (
( u D w )  +  ( u D v ) ) ) )
86 ismet 22128 . 2  |-  ( X  e.  V  ->  ( D  e.  ( Met `  X )  <->  ( D : ( X  X.  X ) --> RR  /\  A. w  e.  X  A. v  e.  X  (
( ( w D v )  =  0  <-> 
w  =  v )  /\  A. u  e.  X  ( w D v )  <_  (
( u D w )  +  ( u D v ) ) ) ) ) )
8785, 86mpbiri 248 1  |-  ( X  e.  V  ->  D  e.  ( Met `  X
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   ifcif 4086   class class class wbr 4653    X. cxp 5112   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    <_ cle 10075   NNcn 11020   NN0cn0 11292   Metcme 19732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-met 19740
This theorem is referenced by:  dscopn  22378
  Copyright terms: Public domain W3C validator