MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcomf Structured version   Visualization version   Unicode version

Theorem lcomf 18902
Description: A linear-combination sum is a function. (Contributed by Stefan O'Rear, 28-Feb-2015.)
Hypotheses
Ref Expression
lcomf.f  |-  F  =  (Scalar `  W )
lcomf.k  |-  K  =  ( Base `  F
)
lcomf.s  |-  .x.  =  ( .s `  W )
lcomf.b  |-  B  =  ( Base `  W
)
lcomf.w  |-  ( ph  ->  W  e.  LMod )
lcomf.g  |-  ( ph  ->  G : I --> K )
lcomf.h  |-  ( ph  ->  H : I --> B )
lcomf.i  |-  ( ph  ->  I  e.  V )
Assertion
Ref Expression
lcomf  |-  ( ph  ->  ( G  oF  .x.  H ) : I --> B )

Proof of Theorem lcomf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lcomf.w . . 3  |-  ( ph  ->  W  e.  LMod )
2 lcomf.b . . . . 5  |-  B  =  ( Base `  W
)
3 lcomf.f . . . . 5  |-  F  =  (Scalar `  W )
4 lcomf.s . . . . 5  |-  .x.  =  ( .s `  W )
5 lcomf.k . . . . 5  |-  K  =  ( Base `  F
)
62, 3, 4, 5lmodvscl 18880 . . . 4  |-  ( ( W  e.  LMod  /\  x  e.  K  /\  y  e.  B )  ->  (
x  .x.  y )  e.  B )
763expb 1266 . . 3  |-  ( ( W  e.  LMod  /\  (
x  e.  K  /\  y  e.  B )
)  ->  ( x  .x.  y )  e.  B
)
81, 7sylan 488 . 2  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  B ) )  -> 
( x  .x.  y
)  e.  B )
9 lcomf.g . 2  |-  ( ph  ->  G : I --> K )
10 lcomf.h . 2  |-  ( ph  ->  H : I --> B )
11 lcomf.i . 2  |-  ( ph  ->  I  e.  V )
12 inidm 3822 . 2  |-  ( I  i^i  I )  =  I
138, 9, 10, 11, 11, 12off 6912 1  |-  ( ph  ->  ( G  oF  .x.  H ) : I --> B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895   Basecbs 15857  Scalarcsca 15944   .scvsca 15945   LModclmod 18863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-lmod 18865
This theorem is referenced by:  lcomfsupp  18903  frlmup2  20138  islindf4  20177
  Copyright terms: Public domain W3C validator