MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmup2 Structured version   Visualization version   Unicode version

Theorem frlmup2 20138
Description: The evaluation map has the intended behavior on the unit vectors. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.)
Hypotheses
Ref Expression
frlmup.f  |-  F  =  ( R freeLMod  I )
frlmup.b  |-  B  =  ( Base `  F
)
frlmup.c  |-  C  =  ( Base `  T
)
frlmup.v  |-  .x.  =  ( .s `  T )
frlmup.e  |-  E  =  ( x  e.  B  |->  ( T  gsumg  ( x  oF  .x.  A ) ) )
frlmup.t  |-  ( ph  ->  T  e.  LMod )
frlmup.i  |-  ( ph  ->  I  e.  X )
frlmup.r  |-  ( ph  ->  R  =  (Scalar `  T ) )
frlmup.a  |-  ( ph  ->  A : I --> C )
frlmup.y  |-  ( ph  ->  Y  e.  I )
frlmup.u  |-  U  =  ( R unitVec  I )
Assertion
Ref Expression
frlmup2  |-  ( ph  ->  ( E `  ( U `  Y )
)  =  ( A `
 Y ) )
Distinct variable groups:    x, R    x, I    x, F    x, B    x, C    x,  .x.    x, A    x, X    ph, x    x, Y    x, U    x, T
Allowed substitution hint:    E( x)

Proof of Theorem frlmup2
StepHypRef Expression
1 frlmup.r . . . . . 6  |-  ( ph  ->  R  =  (Scalar `  T ) )
2 frlmup.t . . . . . . 7  |-  ( ph  ->  T  e.  LMod )
3 eqid 2622 . . . . . . . 8  |-  (Scalar `  T )  =  (Scalar `  T )
43lmodring 18871 . . . . . . 7  |-  ( T  e.  LMod  ->  (Scalar `  T )  e.  Ring )
52, 4syl 17 . . . . . 6  |-  ( ph  ->  (Scalar `  T )  e.  Ring )
61, 5eqeltrd 2701 . . . . 5  |-  ( ph  ->  R  e.  Ring )
7 frlmup.i . . . . 5  |-  ( ph  ->  I  e.  X )
8 frlmup.u . . . . . 6  |-  U  =  ( R unitVec  I )
9 frlmup.f . . . . . 6  |-  F  =  ( R freeLMod  I )
10 frlmup.b . . . . . 6  |-  B  =  ( Base `  F
)
118, 9, 10uvcff 20130 . . . . 5  |-  ( ( R  e.  Ring  /\  I  e.  X )  ->  U : I --> B )
126, 7, 11syl2anc 693 . . . 4  |-  ( ph  ->  U : I --> B )
13 frlmup.y . . . 4  |-  ( ph  ->  Y  e.  I )
1412, 13ffvelrnd 6360 . . 3  |-  ( ph  ->  ( U `  Y
)  e.  B )
15 oveq1 6657 . . . . 5  |-  ( x  =  ( U `  Y )  ->  (
x  oF  .x.  A )  =  ( ( U `  Y
)  oF  .x.  A ) )
1615oveq2d 6666 . . . 4  |-  ( x  =  ( U `  Y )  ->  ( T  gsumg  ( x  oF  .x.  A ) )  =  ( T  gsumg  ( ( U `  Y )  oF  .x.  A
) ) )
17 frlmup.e . . . 4  |-  E  =  ( x  e.  B  |->  ( T  gsumg  ( x  oF  .x.  A ) ) )
18 ovex 6678 . . . 4  |-  ( T 
gsumg  ( ( U `  Y )  oF  .x.  A ) )  e.  _V
1916, 17, 18fvmpt 6282 . . 3  |-  ( ( U `  Y )  e.  B  ->  ( E `  ( U `  Y ) )  =  ( T  gsumg  ( ( U `  Y )  oF  .x.  A ) ) )
2014, 19syl 17 . 2  |-  ( ph  ->  ( E `  ( U `  Y )
)  =  ( T 
gsumg  ( ( U `  Y )  oF  .x.  A ) ) )
21 frlmup.c . . 3  |-  C  =  ( Base `  T
)
22 eqid 2622 . . 3  |-  ( 0g
`  T )  =  ( 0g `  T
)
23 lmodcmn 18911 . . . 4  |-  ( T  e.  LMod  ->  T  e. CMnd
)
24 cmnmnd 18208 . . . 4  |-  ( T  e. CMnd  ->  T  e.  Mnd )
252, 23, 243syl 18 . . 3  |-  ( ph  ->  T  e.  Mnd )
26 eqid 2622 . . . 4  |-  ( Base `  (Scalar `  T )
)  =  ( Base `  (Scalar `  T )
)
27 frlmup.v . . . 4  |-  .x.  =  ( .s `  T )
28 eqid 2622 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  R )
299, 28, 10frlmbasf 20104 . . . . . 6  |-  ( ( I  e.  X  /\  ( U `  Y )  e.  B )  -> 
( U `  Y
) : I --> ( Base `  R ) )
307, 14, 29syl2anc 693 . . . . 5  |-  ( ph  ->  ( U `  Y
) : I --> ( Base `  R ) )
311fveq2d 6195 . . . . . 6  |-  ( ph  ->  ( Base `  R
)  =  ( Base `  (Scalar `  T )
) )
3231feq3d 6032 . . . . 5  |-  ( ph  ->  ( ( U `  Y ) : I --> ( Base `  R
)  <->  ( U `  Y ) : I --> ( Base `  (Scalar `  T ) ) ) )
3330, 32mpbid 222 . . . 4  |-  ( ph  ->  ( U `  Y
) : I --> ( Base `  (Scalar `  T )
) )
34 frlmup.a . . . 4  |-  ( ph  ->  A : I --> C )
353, 26, 27, 21, 2, 33, 34, 7lcomf 18902 . . 3  |-  ( ph  ->  ( ( U `  Y )  oF  .x.  A ) : I --> C )
36 ffn 6045 . . . . . . . 8  |-  ( ( U `  Y ) : I --> ( Base `  R )  ->  ( U `  Y )  Fn  I )
3730, 36syl 17 . . . . . . 7  |-  ( ph  ->  ( U `  Y
)  Fn  I )
3837adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  ( I  \  { Y } ) )  -> 
( U `  Y
)  Fn  I )
39 ffn 6045 . . . . . . . 8  |-  ( A : I --> C  ->  A  Fn  I )
4034, 39syl 17 . . . . . . 7  |-  ( ph  ->  A  Fn  I )
4140adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  ( I  \  { Y } ) )  ->  A  Fn  I )
427adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  ( I  \  { Y } ) )  ->  I  e.  X )
43 eldifi 3732 . . . . . . 7  |-  ( x  e.  ( I  \  { Y } )  ->  x  e.  I )
4443adantl 482 . . . . . 6  |-  ( (
ph  /\  x  e.  ( I  \  { Y } ) )  ->  x  e.  I )
45 fnfvof 6911 . . . . . 6  |-  ( ( ( ( U `  Y )  Fn  I  /\  A  Fn  I
)  /\  ( I  e.  X  /\  x  e.  I ) )  -> 
( ( ( U `
 Y )  oF  .x.  A ) `
 x )  =  ( ( ( U `
 Y ) `  x )  .x.  ( A `  x )
) )
4638, 41, 42, 44, 45syl22anc 1327 . . . . 5  |-  ( (
ph  /\  x  e.  ( I  \  { Y } ) )  -> 
( ( ( U `
 Y )  oF  .x.  A ) `
 x )  =  ( ( ( U `
 Y ) `  x )  .x.  ( A `  x )
) )
476adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( I  \  { Y } ) )  ->  R  e.  Ring )
4813adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( I  \  { Y } ) )  ->  Y  e.  I )
49 eldifsni 4320 . . . . . . . . . 10  |-  ( x  e.  ( I  \  { Y } )  ->  x  =/=  Y )
5049necomd 2849 . . . . . . . . 9  |-  ( x  e.  ( I  \  { Y } )  ->  Y  =/=  x )
5150adantl 482 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( I  \  { Y } ) )  ->  Y  =/=  x )
52 eqid 2622 . . . . . . . 8  |-  ( 0g
`  R )  =  ( 0g `  R
)
538, 47, 42, 48, 44, 51, 52uvcvv0 20129 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( I  \  { Y } ) )  -> 
( ( U `  Y ) `  x
)  =  ( 0g
`  R ) )
541fveq2d 6195 . . . . . . . 8  |-  ( ph  ->  ( 0g `  R
)  =  ( 0g
`  (Scalar `  T )
) )
5554adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( I  \  { Y } ) )  -> 
( 0g `  R
)  =  ( 0g
`  (Scalar `  T )
) )
5653, 55eqtrd 2656 . . . . . 6  |-  ( (
ph  /\  x  e.  ( I  \  { Y } ) )  -> 
( ( U `  Y ) `  x
)  =  ( 0g
`  (Scalar `  T )
) )
5756oveq1d 6665 . . . . 5  |-  ( (
ph  /\  x  e.  ( I  \  { Y } ) )  -> 
( ( ( U `
 Y ) `  x )  .x.  ( A `  x )
)  =  ( ( 0g `  (Scalar `  T ) )  .x.  ( A `  x ) ) )
582adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  ( I  \  { Y } ) )  ->  T  e.  LMod )
59 ffvelrn 6357 . . . . . . 7  |-  ( ( A : I --> C  /\  x  e.  I )  ->  ( A `  x
)  e.  C )
6034, 43, 59syl2an 494 . . . . . 6  |-  ( (
ph  /\  x  e.  ( I  \  { Y } ) )  -> 
( A `  x
)  e.  C )
61 eqid 2622 . . . . . . 7  |-  ( 0g
`  (Scalar `  T )
)  =  ( 0g
`  (Scalar `  T )
)
6221, 3, 27, 61, 22lmod0vs 18896 . . . . . 6  |-  ( ( T  e.  LMod  /\  ( A `  x )  e.  C )  ->  (
( 0g `  (Scalar `  T ) )  .x.  ( A `  x ) )  =  ( 0g
`  T ) )
6358, 60, 62syl2anc 693 . . . . 5  |-  ( (
ph  /\  x  e.  ( I  \  { Y } ) )  -> 
( ( 0g `  (Scalar `  T ) ) 
.x.  ( A `  x ) )  =  ( 0g `  T
) )
6446, 57, 633eqtrd 2660 . . . 4  |-  ( (
ph  /\  x  e.  ( I  \  { Y } ) )  -> 
( ( ( U `
 Y )  oF  .x.  A ) `
 x )  =  ( 0g `  T
) )
6535, 64suppss 7325 . . 3  |-  ( ph  ->  ( ( ( U `
 Y )  oF  .x.  A ) supp  ( 0g `  T
) )  C_  { Y } )
6621, 22, 25, 7, 13, 35, 65gsumpt 18361 . 2  |-  ( ph  ->  ( T  gsumg  ( ( U `  Y )  oF  .x.  A ) )  =  ( ( ( U `  Y )  oF  .x.  A
) `  Y )
)
67 fnfvof 6911 . . . 4  |-  ( ( ( ( U `  Y )  Fn  I  /\  A  Fn  I
)  /\  ( I  e.  X  /\  Y  e.  I ) )  -> 
( ( ( U `
 Y )  oF  .x.  A ) `
 Y )  =  ( ( ( U `
 Y ) `  Y )  .x.  ( A `  Y )
) )
6837, 40, 7, 13, 67syl22anc 1327 . . 3  |-  ( ph  ->  ( ( ( U `
 Y )  oF  .x.  A ) `
 Y )  =  ( ( ( U `
 Y ) `  Y )  .x.  ( A `  Y )
) )
69 eqid 2622 . . . . . 6  |-  ( 1r
`  R )  =  ( 1r `  R
)
708, 6, 7, 13, 69uvcvv1 20128 . . . . 5  |-  ( ph  ->  ( ( U `  Y ) `  Y
)  =  ( 1r
`  R ) )
711fveq2d 6195 . . . . 5  |-  ( ph  ->  ( 1r `  R
)  =  ( 1r
`  (Scalar `  T )
) )
7270, 71eqtrd 2656 . . . 4  |-  ( ph  ->  ( ( U `  Y ) `  Y
)  =  ( 1r
`  (Scalar `  T )
) )
7372oveq1d 6665 . . 3  |-  ( ph  ->  ( ( ( U `
 Y ) `  Y )  .x.  ( A `  Y )
)  =  ( ( 1r `  (Scalar `  T ) )  .x.  ( A `  Y ) ) )
7434, 13ffvelrnd 6360 . . . 4  |-  ( ph  ->  ( A `  Y
)  e.  C )
75 eqid 2622 . . . . 5  |-  ( 1r
`  (Scalar `  T )
)  =  ( 1r
`  (Scalar `  T )
)
7621, 3, 27, 75lmodvs1 18891 . . . 4  |-  ( ( T  e.  LMod  /\  ( A `  Y )  e.  C )  ->  (
( 1r `  (Scalar `  T ) )  .x.  ( A `  Y ) )  =  ( A `
 Y ) )
772, 74, 76syl2anc 693 . . 3  |-  ( ph  ->  ( ( 1r `  (Scalar `  T ) ) 
.x.  ( A `  Y ) )  =  ( A `  Y
) )
7868, 73, 773eqtrd 2660 . 2  |-  ( ph  ->  ( ( ( U `
 Y )  oF  .x.  A ) `
 Y )  =  ( A `  Y
) )
7920, 66, 783eqtrd 2660 1  |-  ( ph  ->  ( E `  ( U `  Y )
)  =  ( A `
 Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    \ cdif 3571   {csn 4177    |-> cmpt 4729    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895   Basecbs 15857  Scalarcsca 15944   .scvsca 15945   0gc0g 16100    gsumg cgsu 16101   Mndcmnd 17294  CMndccmn 18193   1rcur 18501   Ringcrg 18547   LModclmod 18863   freeLMod cfrlm 20090   unitVec cuvc 20121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-sra 19172  df-rgmod 19173  df-dsmm 20076  df-frlm 20091  df-uvc 20122
This theorem is referenced by:  frlmup3  20139  frlmup4  20140
  Copyright terms: Public domain W3C validator