Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldilset Structured version   Visualization version   Unicode version

Theorem ldilset 35395
Description: The set of lattice dilations for a fiducial co-atom  W. (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
ldilset.b  |-  B  =  ( Base `  K
)
ldilset.l  |-  .<_  =  ( le `  K )
ldilset.h  |-  H  =  ( LHyp `  K
)
ldilset.i  |-  I  =  ( LAut `  K
)
ldilset.d  |-  D  =  ( ( LDil `  K
) `  W )
Assertion
Ref Expression
ldilset  |-  ( ( K  e.  C  /\  W  e.  H )  ->  D  =  { f  e.  I  |  A. x  e.  B  (
x  .<_  W  ->  (
f `  x )  =  x ) } )
Distinct variable groups:    x, B    f, I    x, f, K   
f, W, x
Allowed substitution hints:    B( f)    C( x, f)    D( x, f)    H( x, f)    I( x)    .<_ ( x, f)

Proof of Theorem ldilset
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 ldilset.d . 2  |-  D  =  ( ( LDil `  K
) `  W )
2 ldilset.b . . . . 5  |-  B  =  ( Base `  K
)
3 ldilset.l . . . . 5  |-  .<_  =  ( le `  K )
4 ldilset.h . . . . 5  |-  H  =  ( LHyp `  K
)
5 ldilset.i . . . . 5  |-  I  =  ( LAut `  K
)
62, 3, 4, 5ldilfset 35394 . . . 4  |-  ( K  e.  C  ->  ( LDil `  K )  =  ( w  e.  H  |->  { f  e.  I  |  A. x  e.  B  ( x  .<_  w  -> 
( f `  x
)  =  x ) } ) )
76fveq1d 6193 . . 3  |-  ( K  e.  C  ->  (
( LDil `  K ) `  W )  =  ( ( w  e.  H  |->  { f  e.  I  |  A. x  e.  B  ( x  .<_  w  -> 
( f `  x
)  =  x ) } ) `  W
) )
8 breq2 4657 . . . . . . 7  |-  ( w  =  W  ->  (
x  .<_  w  <->  x  .<_  W ) )
98imbi1d 331 . . . . . 6  |-  ( w  =  W  ->  (
( x  .<_  w  -> 
( f `  x
)  =  x )  <-> 
( x  .<_  W  -> 
( f `  x
)  =  x ) ) )
109ralbidv 2986 . . . . 5  |-  ( w  =  W  ->  ( A. x  e.  B  ( x  .<_  w  -> 
( f `  x
)  =  x )  <->  A. x  e.  B  ( x  .<_  W  -> 
( f `  x
)  =  x ) ) )
1110rabbidv 3189 . . . 4  |-  ( w  =  W  ->  { f  e.  I  |  A. x  e.  B  (
x  .<_  w  ->  (
f `  x )  =  x ) }  =  { f  e.  I  |  A. x  e.  B  ( x  .<_  W  -> 
( f `  x
)  =  x ) } )
12 eqid 2622 . . . 4  |-  ( w  e.  H  |->  { f  e.  I  |  A. x  e.  B  (
x  .<_  w  ->  (
f `  x )  =  x ) } )  =  ( w  e.  H  |->  { f  e.  I  |  A. x  e.  B  ( x  .<_  w  ->  ( f `  x )  =  x ) } )
13 fvex 6201 . . . . . 6  |-  ( LAut `  K )  e.  _V
145, 13eqeltri 2697 . . . . 5  |-  I  e. 
_V
1514rabex 4813 . . . 4  |-  { f  e.  I  |  A. x  e.  B  (
x  .<_  W  ->  (
f `  x )  =  x ) }  e.  _V
1611, 12, 15fvmpt 6282 . . 3  |-  ( W  e.  H  ->  (
( w  e.  H  |->  { f  e.  I  |  A. x  e.  B  ( x  .<_  w  -> 
( f `  x
)  =  x ) } ) `  W
)  =  { f  e.  I  |  A. x  e.  B  (
x  .<_  W  ->  (
f `  x )  =  x ) } )
177, 16sylan9eq 2676 . 2  |-  ( ( K  e.  C  /\  W  e.  H )  ->  ( ( LDil `  K
) `  W )  =  { f  e.  I  |  A. x  e.  B  ( x  .<_  W  -> 
( f `  x
)  =  x ) } )
181, 17syl5eq 2668 1  |-  ( ( K  e.  C  /\  W  e.  H )  ->  D  =  { f  e.  I  |  A. x  e.  B  (
x  .<_  W  ->  (
f `  x )  =  x ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888   Basecbs 15857   lecple 15948   LHypclh 35270   LAutclaut 35271   LDilcldil 35386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ldil 35390
This theorem is referenced by:  isldil  35396
  Copyright terms: Public domain W3C validator