Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldilfset Structured version   Visualization version   Unicode version

Theorem ldilfset 35394
Description: The mapping from fiducial co-atom  w to its set of lattice dilations. (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
ldilset.b  |-  B  =  ( Base `  K
)
ldilset.l  |-  .<_  =  ( le `  K )
ldilset.h  |-  H  =  ( LHyp `  K
)
ldilset.i  |-  I  =  ( LAut `  K
)
Assertion
Ref Expression
ldilfset  |-  ( K  e.  C  ->  ( LDil `  K )  =  ( w  e.  H  |->  { f  e.  I  |  A. x  e.  B  ( x  .<_  w  -> 
( f `  x
)  =  x ) } ) )
Distinct variable groups:    x, B    w, H    f, I    w, f, x, K
Allowed substitution hints:    B( w, f)    C( x, w, f)    H( x, f)    I( x, w)    .<_ ( x, w, f)

Proof of Theorem ldilfset
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elex 3212 . 2  |-  ( K  e.  C  ->  K  e.  _V )
2 fveq2 6191 . . . . 5  |-  ( k  =  K  ->  ( LHyp `  k )  =  ( LHyp `  K
) )
3 ldilset.h . . . . 5  |-  H  =  ( LHyp `  K
)
42, 3syl6eqr 2674 . . . 4  |-  ( k  =  K  ->  ( LHyp `  k )  =  H )
5 fveq2 6191 . . . . . 6  |-  ( k  =  K  ->  ( LAut `  k )  =  ( LAut `  K
) )
6 ldilset.i . . . . . 6  |-  I  =  ( LAut `  K
)
75, 6syl6eqr 2674 . . . . 5  |-  ( k  =  K  ->  ( LAut `  k )  =  I )
8 fveq2 6191 . . . . . . 7  |-  ( k  =  K  ->  ( Base `  k )  =  ( Base `  K
) )
9 ldilset.b . . . . . . 7  |-  B  =  ( Base `  K
)
108, 9syl6eqr 2674 . . . . . 6  |-  ( k  =  K  ->  ( Base `  k )  =  B )
11 fveq2 6191 . . . . . . . . 9  |-  ( k  =  K  ->  ( le `  k )  =  ( le `  K
) )
12 ldilset.l . . . . . . . . 9  |-  .<_  =  ( le `  K )
1311, 12syl6eqr 2674 . . . . . . . 8  |-  ( k  =  K  ->  ( le `  k )  = 
.<_  )
1413breqd 4664 . . . . . . 7  |-  ( k  =  K  ->  (
x ( le `  k ) w  <->  x  .<_  w ) )
1514imbi1d 331 . . . . . 6  |-  ( k  =  K  ->  (
( x ( le
`  k ) w  ->  ( f `  x )  =  x )  <->  ( x  .<_  w  ->  ( f `  x )  =  x ) ) )
1610, 15raleqbidv 3152 . . . . 5  |-  ( k  =  K  ->  ( A. x  e.  ( Base `  k ) ( x ( le `  k ) w  -> 
( f `  x
)  =  x )  <->  A. x  e.  B  ( x  .<_  w  -> 
( f `  x
)  =  x ) ) )
177, 16rabeqbidv 3195 . . . 4  |-  ( k  =  K  ->  { f  e.  ( LAut `  k
)  |  A. x  e.  ( Base `  k
) ( x ( le `  k ) w  ->  ( f `  x )  =  x ) }  =  {
f  e.  I  | 
A. x  e.  B  ( x  .<_  w  -> 
( f `  x
)  =  x ) } )
184, 17mpteq12dv 4733 . . 3  |-  ( k  =  K  ->  (
w  e.  ( LHyp `  k )  |->  { f  e.  ( LAut `  k
)  |  A. x  e.  ( Base `  k
) ( x ( le `  k ) w  ->  ( f `  x )  =  x ) } )  =  ( w  e.  H  |->  { f  e.  I  |  A. x  e.  B  ( x  .<_  w  -> 
( f `  x
)  =  x ) } ) )
19 df-ldil 35390 . . 3  |-  LDil  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k )  |->  { f  e.  ( LAut `  k )  |  A. x  e.  ( Base `  k ) ( x ( le `  k
) w  ->  (
f `  x )  =  x ) } ) )
20 fvex 6201 . . . . 5  |-  ( LHyp `  K )  e.  _V
213, 20eqeltri 2697 . . . 4  |-  H  e. 
_V
2221mptex 6486 . . 3  |-  ( w  e.  H  |->  { f  e.  I  |  A. x  e.  B  (
x  .<_  w  ->  (
f `  x )  =  x ) } )  e.  _V
2318, 19, 22fvmpt 6282 . 2  |-  ( K  e.  _V  ->  ( LDil `  K )  =  ( w  e.  H  |->  { f  e.  I  |  A. x  e.  B  ( x  .<_  w  -> 
( f `  x
)  =  x ) } ) )
241, 23syl 17 1  |-  ( K  e.  C  ->  ( LDil `  K )  =  ( w  e.  H  |->  { f  e.  I  |  A. x  e.  B  ( x  .<_  w  -> 
( f `  x
)  =  x ) } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888   Basecbs 15857   lecple 15948   LHypclh 35270   LAutclaut 35271   LDilcldil 35386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ldil 35390
This theorem is referenced by:  ldilset  35395
  Copyright terms: Public domain W3C validator