| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodlema | Structured version Visualization version Unicode version | ||
| Description: Lemma for properties of a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| islmod.v |
|
| islmod.a |
|
| islmod.s |
|
| islmod.f |
|
| islmod.k |
|
| islmod.p |
|
| islmod.t |
|
| islmod.u |
|
| Ref | Expression |
|---|---|
| lmodlema |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islmod.v |
. . . . . 6
| |
| 2 | islmod.a |
. . . . . 6
| |
| 3 | islmod.s |
. . . . . 6
| |
| 4 | islmod.f |
. . . . . 6
| |
| 5 | islmod.k |
. . . . . 6
| |
| 6 | islmod.p |
. . . . . 6
| |
| 7 | islmod.t |
. . . . . 6
| |
| 8 | islmod.u |
. . . . . 6
| |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | islmod 18867 |
. . . . 5
|
| 10 | 9 | simp3bi 1078 |
. . . 4
|
| 11 | oveq1 6657 |
. . . . . . . . . 10
| |
| 12 | 11 | oveq1d 6665 |
. . . . . . . . 9
|
| 13 | oveq1 6657 |
. . . . . . . . . 10
| |
| 14 | 13 | oveq1d 6665 |
. . . . . . . . 9
|
| 15 | 12, 14 | eqeq12d 2637 |
. . . . . . . 8
|
| 16 | 15 | 3anbi3d 1405 |
. . . . . . 7
|
| 17 | oveq1 6657 |
. . . . . . . . . 10
| |
| 18 | 17 | oveq1d 6665 |
. . . . . . . . 9
|
| 19 | oveq1 6657 |
. . . . . . . . 9
| |
| 20 | 18, 19 | eqeq12d 2637 |
. . . . . . . 8
|
| 21 | 20 | anbi1d 741 |
. . . . . . 7
|
| 22 | 16, 21 | anbi12d 747 |
. . . . . 6
|
| 23 | 22 | 2ralbidv 2989 |
. . . . 5
|
| 24 | oveq1 6657 |
. . . . . . . . 9
| |
| 25 | 24 | eleq1d 2686 |
. . . . . . . 8
|
| 26 | oveq1 6657 |
. . . . . . . . 9
| |
| 27 | oveq1 6657 |
. . . . . . . . . 10
| |
| 28 | 24, 27 | oveq12d 6668 |
. . . . . . . . 9
|
| 29 | 26, 28 | eqeq12d 2637 |
. . . . . . . 8
|
| 30 | oveq2 6658 |
. . . . . . . . . 10
| |
| 31 | 30 | oveq1d 6665 |
. . . . . . . . 9
|
| 32 | 24 | oveq2d 6666 |
. . . . . . . . 9
|
| 33 | 31, 32 | eqeq12d 2637 |
. . . . . . . 8
|
| 34 | 25, 29, 33 | 3anbi123d 1399 |
. . . . . . 7
|
| 35 | oveq2 6658 |
. . . . . . . . . 10
| |
| 36 | 35 | oveq1d 6665 |
. . . . . . . . 9
|
| 37 | 24 | oveq2d 6666 |
. . . . . . . . 9
|
| 38 | 36, 37 | eqeq12d 2637 |
. . . . . . . 8
|
| 39 | 38 | anbi1d 741 |
. . . . . . 7
|
| 40 | 34, 39 | anbi12d 747 |
. . . . . 6
|
| 41 | 40 | 2ralbidv 2989 |
. . . . 5
|
| 42 | 23, 41 | rspc2v 3322 |
. . . 4
|
| 43 | 10, 42 | mpan9 486 |
. . 3
|
| 44 | oveq2 6658 |
. . . . . . . 8
| |
| 45 | 44 | oveq2d 6666 |
. . . . . . 7
|
| 46 | oveq2 6658 |
. . . . . . . 8
| |
| 47 | 46 | oveq2d 6666 |
. . . . . . 7
|
| 48 | 45, 47 | eqeq12d 2637 |
. . . . . 6
|
| 49 | 48 | 3anbi2d 1404 |
. . . . 5
|
| 50 | 49 | anbi1d 741 |
. . . 4
|
| 51 | oveq2 6658 |
. . . . . . 7
| |
| 52 | 51 | eleq1d 2686 |
. . . . . 6
|
| 53 | oveq1 6657 |
. . . . . . . 8
| |
| 54 | 53 | oveq2d 6666 |
. . . . . . 7
|
| 55 | 51 | oveq1d 6665 |
. . . . . . 7
|
| 56 | 54, 55 | eqeq12d 2637 |
. . . . . 6
|
| 57 | oveq2 6658 |
. . . . . . 7
| |
| 58 | oveq2 6658 |
. . . . . . . 8
| |
| 59 | 58, 51 | oveq12d 6668 |
. . . . . . 7
|
| 60 | 57, 59 | eqeq12d 2637 |
. . . . . 6
|
| 61 | 52, 56, 60 | 3anbi123d 1399 |
. . . . 5
|
| 62 | oveq2 6658 |
. . . . . . 7
| |
| 63 | 51 | oveq2d 6666 |
. . . . . . 7
|
| 64 | 62, 63 | eqeq12d 2637 |
. . . . . 6
|
| 65 | oveq2 6658 |
. . . . . . 7
| |
| 66 | id 22 |
. . . . . . 7
| |
| 67 | 65, 66 | eqeq12d 2637 |
. . . . . 6
|
| 68 | 64, 67 | anbi12d 747 |
. . . . 5
|
| 69 | 61, 68 | anbi12d 747 |
. . . 4
|
| 70 | 50, 69 | rspc2v 3322 |
. . 3
|
| 71 | 43, 70 | syl5com 31 |
. 2
|
| 72 | 71 | 3impia 1261 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-lmod 18865 |
| This theorem is referenced by: lmodvscl 18880 lmodvsdi 18886 lmodvsdir 18887 lmodvsass 18888 lmodvs1 18891 |
| Copyright terms: Public domain | W3C validator |