Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lpolsetN Structured version   Visualization version   Unicode version

Theorem lpolsetN 36771
Description: The set of polarities of a left module or left vector space. (Contributed by NM, 24-Nov-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
lpolset.v  |-  V  =  ( Base `  W
)
lpolset.s  |-  S  =  ( LSubSp `  W )
lpolset.z  |-  .0.  =  ( 0g `  W )
lpolset.a  |-  A  =  (LSAtoms `  W )
lpolset.h  |-  H  =  (LSHyp `  W )
lpolset.p  |-  P  =  (LPol `  W )
Assertion
Ref Expression
lpolsetN  |-  ( W  e.  X  ->  P  =  { o  e.  ( S  ^m  ~P V
)  |  ( ( o `  V )  =  {  .0.  }  /\  A. x A. y
( ( x  C_  V  /\  y  C_  V  /\  x  C_  y )  ->  ( o `  y )  C_  (
o `  x )
)  /\  A. x  e.  A  ( (
o `  x )  e.  H  /\  (
o `  ( o `  x ) )  =  x ) ) } )
Distinct variable groups:    x, A    S, o    o, V    x, o, y, W
Allowed substitution hints:    A( y, o)    P( x, y, o)    S( x, y)    H( x, y, o)    V( x, y)    X( x, y, o)    .0. ( x, y, o)

Proof of Theorem lpolsetN
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 elex 3212 . 2  |-  ( W  e.  X  ->  W  e.  _V )
2 lpolset.p . . 3  |-  P  =  (LPol `  W )
3 fveq2 6191 . . . . . . 7  |-  ( w  =  W  ->  ( LSubSp `
 w )  =  ( LSubSp `  W )
)
4 lpolset.s . . . . . . 7  |-  S  =  ( LSubSp `  W )
53, 4syl6eqr 2674 . . . . . 6  |-  ( w  =  W  ->  ( LSubSp `
 w )  =  S )
6 fveq2 6191 . . . . . . . 8  |-  ( w  =  W  ->  ( Base `  w )  =  ( Base `  W
) )
7 lpolset.v . . . . . . . 8  |-  V  =  ( Base `  W
)
86, 7syl6eqr 2674 . . . . . . 7  |-  ( w  =  W  ->  ( Base `  w )  =  V )
98pweqd 4163 . . . . . 6  |-  ( w  =  W  ->  ~P ( Base `  w )  =  ~P V )
105, 9oveq12d 6668 . . . . 5  |-  ( w  =  W  ->  (
( LSubSp `  w )  ^m  ~P ( Base `  w
) )  =  ( S  ^m  ~P V
) )
118fveq2d 6195 . . . . . . 7  |-  ( w  =  W  ->  (
o `  ( Base `  w ) )  =  ( o `  V
) )
12 fveq2 6191 . . . . . . . . 9  |-  ( w  =  W  ->  ( 0g `  w )  =  ( 0g `  W
) )
13 lpolset.z . . . . . . . . 9  |-  .0.  =  ( 0g `  W )
1412, 13syl6eqr 2674 . . . . . . . 8  |-  ( w  =  W  ->  ( 0g `  w )  =  .0.  )
1514sneqd 4189 . . . . . . 7  |-  ( w  =  W  ->  { ( 0g `  w ) }  =  {  .0.  } )
1611, 15eqeq12d 2637 . . . . . 6  |-  ( w  =  W  ->  (
( o `  ( Base `  w ) )  =  { ( 0g
`  w ) }  <-> 
( o `  V
)  =  {  .0.  } ) )
178sseq2d 3633 . . . . . . . . 9  |-  ( w  =  W  ->  (
x  C_  ( Base `  w )  <->  x  C_  V
) )
188sseq2d 3633 . . . . . . . . 9  |-  ( w  =  W  ->  (
y  C_  ( Base `  w )  <->  y  C_  V ) )
1917, 183anbi12d 1400 . . . . . . . 8  |-  ( w  =  W  ->  (
( x  C_  ( Base `  w )  /\  y  C_  ( Base `  w
)  /\  x  C_  y
)  <->  ( x  C_  V  /\  y  C_  V  /\  x  C_  y ) ) )
2019imbi1d 331 . . . . . . 7  |-  ( w  =  W  ->  (
( ( x  C_  ( Base `  w )  /\  y  C_  ( Base `  w )  /\  x  C_  y )  ->  (
o `  y )  C_  ( o `  x
) )  <->  ( (
x  C_  V  /\  y  C_  V  /\  x  C_  y )  ->  (
o `  y )  C_  ( o `  x
) ) ) )
21202albidv 1851 . . . . . 6  |-  ( w  =  W  ->  ( A. x A. y ( ( x  C_  ( Base `  w )  /\  y  C_  ( Base `  w
)  /\  x  C_  y
)  ->  ( o `  y )  C_  (
o `  x )
)  <->  A. x A. y
( ( x  C_  V  /\  y  C_  V  /\  x  C_  y )  ->  ( o `  y )  C_  (
o `  x )
) ) )
22 fveq2 6191 . . . . . . . 8  |-  ( w  =  W  ->  (LSAtoms `  w )  =  (LSAtoms `  W ) )
23 lpolset.a . . . . . . . 8  |-  A  =  (LSAtoms `  W )
2422, 23syl6eqr 2674 . . . . . . 7  |-  ( w  =  W  ->  (LSAtoms `  w )  =  A )
25 fveq2 6191 . . . . . . . . . 10  |-  ( w  =  W  ->  (LSHyp `  w )  =  (LSHyp `  W ) )
26 lpolset.h . . . . . . . . . 10  |-  H  =  (LSHyp `  W )
2725, 26syl6eqr 2674 . . . . . . . . 9  |-  ( w  =  W  ->  (LSHyp `  w )  =  H )
2827eleq2d 2687 . . . . . . . 8  |-  ( w  =  W  ->  (
( o `  x
)  e.  (LSHyp `  w )  <->  ( o `  x )  e.  H
) )
2928anbi1d 741 . . . . . . 7  |-  ( w  =  W  ->  (
( ( o `  x )  e.  (LSHyp `  w )  /\  (
o `  ( o `  x ) )  =  x )  <->  ( (
o `  x )  e.  H  /\  (
o `  ( o `  x ) )  =  x ) ) )
3024, 29raleqbidv 3152 . . . . . 6  |-  ( w  =  W  ->  ( A. x  e.  (LSAtoms `  w ) ( ( o `  x )  e.  (LSHyp `  w
)  /\  ( o `  ( o `  x
) )  =  x )  <->  A. x  e.  A  ( ( o `  x )  e.  H  /\  ( o `  (
o `  x )
)  =  x ) ) )
3116, 21, 303anbi123d 1399 . . . . 5  |-  ( w  =  W  ->  (
( ( o `  ( Base `  w )
)  =  { ( 0g `  w ) }  /\  A. x A. y ( ( x 
C_  ( Base `  w
)  /\  y  C_  ( Base `  w )  /\  x  C_  y )  ->  ( o `  y )  C_  (
o `  x )
)  /\  A. x  e.  (LSAtoms `  w )
( ( o `  x )  e.  (LSHyp `  w )  /\  (
o `  ( o `  x ) )  =  x ) )  <->  ( (
o `  V )  =  {  .0.  }  /\  A. x A. y ( ( x  C_  V  /\  y  C_  V  /\  x  C_  y )  -> 
( o `  y
)  C_  ( o `  x ) )  /\  A. x  e.  A  ( ( o `  x
)  e.  H  /\  ( o `  (
o `  x )
)  =  x ) ) ) )
3210, 31rabeqbidv 3195 . . . 4  |-  ( w  =  W  ->  { o  e.  ( ( LSubSp `  w )  ^m  ~P ( Base `  w )
)  |  ( ( o `  ( Base `  w ) )  =  { ( 0g `  w ) }  /\  A. x A. y ( ( x  C_  ( Base `  w )  /\  y  C_  ( Base `  w
)  /\  x  C_  y
)  ->  ( o `  y )  C_  (
o `  x )
)  /\  A. x  e.  (LSAtoms `  w )
( ( o `  x )  e.  (LSHyp `  w )  /\  (
o `  ( o `  x ) )  =  x ) ) }  =  { o  e.  ( S  ^m  ~P V )  |  ( ( o `  V
)  =  {  .0.  }  /\  A. x A. y ( ( x 
C_  V  /\  y  C_  V  /\  x  C_  y )  ->  (
o `  y )  C_  ( o `  x
) )  /\  A. x  e.  A  (
( o `  x
)  e.  H  /\  ( o `  (
o `  x )
)  =  x ) ) } )
33 df-lpolN 36770 . . . 4  |- LPol  =  ( w  e.  _V  |->  { o  e.  ( (
LSubSp `  w )  ^m  ~P ( Base `  w
) )  |  ( ( o `  ( Base `  w ) )  =  { ( 0g
`  w ) }  /\  A. x A. y ( ( x 
C_  ( Base `  w
)  /\  y  C_  ( Base `  w )  /\  x  C_  y )  ->  ( o `  y )  C_  (
o `  x )
)  /\  A. x  e.  (LSAtoms `  w )
( ( o `  x )  e.  (LSHyp `  w )  /\  (
o `  ( o `  x ) )  =  x ) ) } )
34 ovex 6678 . . . . 5  |-  ( S  ^m  ~P V )  e.  _V
3534rabex 4813 . . . 4  |-  { o  e.  ( S  ^m  ~P V )  |  ( ( o `  V
)  =  {  .0.  }  /\  A. x A. y ( ( x 
C_  V  /\  y  C_  V  /\  x  C_  y )  ->  (
o `  y )  C_  ( o `  x
) )  /\  A. x  e.  A  (
( o `  x
)  e.  H  /\  ( o `  (
o `  x )
)  =  x ) ) }  e.  _V
3632, 33, 35fvmpt 6282 . . 3  |-  ( W  e.  _V  ->  (LPol `  W )  =  {
o  e.  ( S  ^m  ~P V )  |  ( ( o `
 V )  =  {  .0.  }  /\  A. x A. y ( ( x  C_  V  /\  y  C_  V  /\  x  C_  y )  -> 
( o `  y
)  C_  ( o `  x ) )  /\  A. x  e.  A  ( ( o `  x
)  e.  H  /\  ( o `  (
o `  x )
)  =  x ) ) } )
372, 36syl5eq 2668 . 2  |-  ( W  e.  _V  ->  P  =  { o  e.  ( S  ^m  ~P V
)  |  ( ( o `  V )  =  {  .0.  }  /\  A. x A. y
( ( x  C_  V  /\  y  C_  V  /\  x  C_  y )  ->  ( o `  y )  C_  (
o `  x )
)  /\  A. x  e.  A  ( (
o `  x )  e.  H  /\  (
o `  ( o `  x ) )  =  x ) ) } )
381, 37syl 17 1  |-  ( W  e.  X  ->  P  =  { o  e.  ( S  ^m  ~P V
)  |  ( ( o `  V )  =  {  .0.  }  /\  A. x A. y
( ( x  C_  V  /\  y  C_  V  /\  x  C_  y )  ->  ( o `  y )  C_  (
o `  x )
)  /\  A. x  e.  A  ( (
o `  x )  e.  H  /\  (
o `  ( o `  x ) )  =  x ) ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   {csn 4177   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   Basecbs 15857   0gc0g 16100   LSubSpclss 18932  LSAtomsclsa 34261  LSHypclsh 34262  LPolclpoN 36769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-lpolN 36770
This theorem is referenced by:  islpolN  36772
  Copyright terms: Public domain W3C validator