HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdi Structured version   Visualization version   Unicode version

Theorem mdi 29154
Description: Consequence of the modular pair property. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
mdi  |-  ( ( ( A  e.  CH  /\  B  e.  CH  /\  C  e.  CH )  /\  ( A  MH  B  /\  C  C_  B ) )  ->  ( ( C  vH  A )  i^i 
B )  =  ( C  vH  ( A  i^i  B ) ) )

Proof of Theorem mdi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 mdbr 29153 . . . . 5  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  MH  B  <->  A. x  e.  CH  (
x  C_  B  ->  ( ( x  vH  A
)  i^i  B )  =  ( x  vH  ( A  i^i  B ) ) ) ) )
21biimpd 219 . . . 4  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  MH  B  ->  A. x  e.  CH  ( x  C_  B  -> 
( ( x  vH  A )  i^i  B
)  =  ( x  vH  ( A  i^i  B ) ) ) ) )
3 sseq1 3626 . . . . . 6  |-  ( x  =  C  ->  (
x  C_  B  <->  C  C_  B
) )
4 oveq1 6657 . . . . . . . 8  |-  ( x  =  C  ->  (
x  vH  A )  =  ( C  vH  A ) )
54ineq1d 3813 . . . . . . 7  |-  ( x  =  C  ->  (
( x  vH  A
)  i^i  B )  =  ( ( C  vH  A )  i^i 
B ) )
6 oveq1 6657 . . . . . . 7  |-  ( x  =  C  ->  (
x  vH  ( A  i^i  B ) )  =  ( C  vH  ( A  i^i  B ) ) )
75, 6eqeq12d 2637 . . . . . 6  |-  ( x  =  C  ->  (
( ( x  vH  A )  i^i  B
)  =  ( x  vH  ( A  i^i  B ) )  <->  ( ( C  vH  A )  i^i 
B )  =  ( C  vH  ( A  i^i  B ) ) ) )
83, 7imbi12d 334 . . . . 5  |-  ( x  =  C  ->  (
( x  C_  B  ->  ( ( x  vH  A )  i^i  B
)  =  ( x  vH  ( A  i^i  B ) ) )  <->  ( C  C_  B  ->  ( ( C  vH  A )  i^i 
B )  =  ( C  vH  ( A  i^i  B ) ) ) ) )
98rspcv 3305 . . . 4  |-  ( C  e.  CH  ->  ( A. x  e.  CH  (
x  C_  B  ->  ( ( x  vH  A
)  i^i  B )  =  ( x  vH  ( A  i^i  B ) ) )  ->  ( C  C_  B  ->  (
( C  vH  A
)  i^i  B )  =  ( C  vH  ( A  i^i  B ) ) ) ) )
102, 9sylan9 689 . . 3  |-  ( ( ( A  e.  CH  /\  B  e.  CH )  /\  C  e.  CH )  ->  ( A  MH  B  ->  ( C  C_  B  ->  ( ( C  vH  A )  i^i  B
)  =  ( C  vH  ( A  i^i  B ) ) ) ) )
11103impa 1259 . 2  |-  ( ( A  e.  CH  /\  B  e.  CH  /\  C  e.  CH )  ->  ( A  MH  B  ->  ( C  C_  B  ->  ( ( C  vH  A
)  i^i  B )  =  ( C  vH  ( A  i^i  B ) ) ) ) )
1211imp32 449 1  |-  ( ( ( A  e.  CH  /\  B  e.  CH  /\  C  e.  CH )  /\  ( A  MH  B  /\  C  C_  B ) )  ->  ( ( C  vH  A )  i^i 
B )  =  ( C  vH  ( A  i^i  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912    i^i cin 3573    C_ wss 3574   class class class wbr 4653  (class class class)co 6650   CHcch 27786    vH chj 27790    MH cmd 27823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-iota 5851  df-fv 5896  df-ov 6653  df-md 29139
This theorem is referenced by:  mdsl3  29175  mdslmd3i  29191  mdexchi  29194  atabsi  29260
  Copyright terms: Public domain W3C validator