HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdbr Structured version   Visualization version   Unicode version

Theorem mdbr 29153
Description: Binary relation expressing  <. A ,  B >. is a modular pair. Definition 1.1 of [MaedaMaeda] p. 1. (Contributed by NM, 14-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
mdbr  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  MH  B  <->  A. x  e.  CH  (
x  C_  B  ->  ( ( x  vH  A
)  i^i  B )  =  ( x  vH  ( A  i^i  B ) ) ) ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem mdbr
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2689 . . . . 5  |-  ( y  =  A  ->  (
y  e.  CH  <->  A  e.  CH ) )
21anbi1d 741 . . . 4  |-  ( y  =  A  ->  (
( y  e.  CH  /\  z  e.  CH )  <->  ( A  e.  CH  /\  z  e.  CH )
) )
3 oveq2 6658 . . . . . . . 8  |-  ( y  =  A  ->  (
x  vH  y )  =  ( x  vH  A ) )
43ineq1d 3813 . . . . . . 7  |-  ( y  =  A  ->  (
( x  vH  y
)  i^i  z )  =  ( ( x  vH  A )  i^i  z ) )
5 ineq1 3807 . . . . . . . 8  |-  ( y  =  A  ->  (
y  i^i  z )  =  ( A  i^i  z ) )
65oveq2d 6666 . . . . . . 7  |-  ( y  =  A  ->  (
x  vH  ( y  i^i  z ) )  =  ( x  vH  ( A  i^i  z ) ) )
74, 6eqeq12d 2637 . . . . . 6  |-  ( y  =  A  ->  (
( ( x  vH  y )  i^i  z
)  =  ( x  vH  ( y  i^i  z ) )  <->  ( (
x  vH  A )  i^i  z )  =  ( x  vH  ( A  i^i  z ) ) ) )
87imbi2d 330 . . . . 5  |-  ( y  =  A  ->  (
( x  C_  z  ->  ( ( x  vH  y )  i^i  z
)  =  ( x  vH  ( y  i^i  z ) ) )  <-> 
( x  C_  z  ->  ( ( x  vH  A )  i^i  z
)  =  ( x  vH  ( A  i^i  z ) ) ) ) )
98ralbidv 2986 . . . 4  |-  ( y  =  A  ->  ( A. x  e.  CH  (
x  C_  z  ->  ( ( x  vH  y
)  i^i  z )  =  ( x  vH  ( y  i^i  z
) ) )  <->  A. x  e.  CH  ( x  C_  z  ->  ( ( x  vH  A )  i^i  z )  =  ( x  vH  ( A  i^i  z ) ) ) ) )
102, 9anbi12d 747 . . 3  |-  ( y  =  A  ->  (
( ( y  e. 
CH  /\  z  e.  CH )  /\  A. x  e.  CH  ( x  C_  z  ->  ( ( x  vH  y )  i^i  z )  =  ( x  vH  ( y  i^i  z ) ) ) )  <->  ( ( A  e.  CH  /\  z  e.  CH )  /\  A. x  e.  CH  ( x 
C_  z  ->  (
( x  vH  A
)  i^i  z )  =  ( x  vH  ( A  i^i  z
) ) ) ) ) )
11 eleq1 2689 . . . . 5  |-  ( z  =  B  ->  (
z  e.  CH  <->  B  e.  CH ) )
1211anbi2d 740 . . . 4  |-  ( z  =  B  ->  (
( A  e.  CH  /\  z  e.  CH )  <->  ( A  e.  CH  /\  B  e.  CH )
) )
13 sseq2 3627 . . . . . 6  |-  ( z  =  B  ->  (
x  C_  z  <->  x  C_  B
) )
14 ineq2 3808 . . . . . . 7  |-  ( z  =  B  ->  (
( x  vH  A
)  i^i  z )  =  ( ( x  vH  A )  i^i 
B ) )
15 ineq2 3808 . . . . . . . 8  |-  ( z  =  B  ->  ( A  i^i  z )  =  ( A  i^i  B
) )
1615oveq2d 6666 . . . . . . 7  |-  ( z  =  B  ->  (
x  vH  ( A  i^i  z ) )  =  ( x  vH  ( A  i^i  B ) ) )
1714, 16eqeq12d 2637 . . . . . 6  |-  ( z  =  B  ->  (
( ( x  vH  A )  i^i  z
)  =  ( x  vH  ( A  i^i  z ) )  <->  ( (
x  vH  A )  i^i  B )  =  ( x  vH  ( A  i^i  B ) ) ) )
1813, 17imbi12d 334 . . . . 5  |-  ( z  =  B  ->  (
( x  C_  z  ->  ( ( x  vH  A )  i^i  z
)  =  ( x  vH  ( A  i^i  z ) ) )  <-> 
( x  C_  B  ->  ( ( x  vH  A )  i^i  B
)  =  ( x  vH  ( A  i^i  B ) ) ) ) )
1918ralbidv 2986 . . . 4  |-  ( z  =  B  ->  ( A. x  e.  CH  (
x  C_  z  ->  ( ( x  vH  A
)  i^i  z )  =  ( x  vH  ( A  i^i  z
) ) )  <->  A. x  e.  CH  ( x  C_  B  ->  ( ( x  vH  A )  i^i 
B )  =  ( x  vH  ( A  i^i  B ) ) ) ) )
2012, 19anbi12d 747 . . 3  |-  ( z  =  B  ->  (
( ( A  e. 
CH  /\  z  e.  CH )  /\  A. x  e.  CH  ( x  C_  z  ->  ( ( x  vH  A )  i^i  z )  =  ( x  vH  ( A  i^i  z ) ) ) )  <->  ( ( A  e.  CH  /\  B  e.  CH )  /\  A. x  e.  CH  ( x 
C_  B  ->  (
( x  vH  A
)  i^i  B )  =  ( x  vH  ( A  i^i  B ) ) ) ) ) )
21 df-md 29139 . . 3  |-  MH  =  { <. y ,  z
>.  |  ( (
y  e.  CH  /\  z  e.  CH )  /\  A. x  e.  CH  ( x  C_  z  -> 
( ( x  vH  y )  i^i  z
)  =  ( x  vH  ( y  i^i  z ) ) ) ) }
2210, 20, 21brabg 4994 . 2  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  MH  B  <->  ( ( A  e.  CH  /\  B  e.  CH )  /\  A. x  e.  CH  ( x  C_  B  -> 
( ( x  vH  A )  i^i  B
)  =  ( x  vH  ( A  i^i  B ) ) ) ) ) )
2322bianabs 924 1  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  MH  B  <->  A. x  e.  CH  (
x  C_  B  ->  ( ( x  vH  A
)  i^i  B )  =  ( x  vH  ( A  i^i  B ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    i^i cin 3573    C_ wss 3574   class class class wbr 4653  (class class class)co 6650   CHcch 27786    vH chj 27790    MH cmd 27823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-iota 5851  df-fv 5896  df-ov 6653  df-md 29139
This theorem is referenced by:  mdi  29154  mdbr2  29155  mdbr3  29156  dmdmd  29159  mddmd2  29168  mdsl1i  29180
  Copyright terms: Public domain W3C validator