MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhmlem Structured version   Visualization version   Unicode version

Theorem mhmlem 17535
Description: Lemma for mhmmnd 17537 and ghmgrp 17539. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 25-Jan-2020.)
Hypotheses
Ref Expression
ghmgrp.f  |-  ( (
ph  /\  x  e.  X  /\  y  e.  X
)  ->  ( F `  ( x  .+  y
) )  =  ( ( F `  x
)  .+^  ( F `  y ) ) )
mhmlem.a  |-  ( ph  ->  A  e.  X )
mhmlem.b  |-  ( ph  ->  B  e.  X )
Assertion
Ref Expression
mhmlem  |-  ( ph  ->  ( F `  ( A  .+  B ) )  =  ( ( F `
 A )  .+^  ( F `  B ) ) )
Distinct variable groups:    x, F, y    x,  .+ , y    x, X, y    x,  .+^ , y    ph, x, y    x, A, y    y, B
Allowed substitution hint:    B( x)

Proof of Theorem mhmlem
StepHypRef Expression
1 id 22 . 2  |-  ( ph  ->  ph )
2 mhmlem.a . 2  |-  ( ph  ->  A  e.  X )
3 mhmlem.b . 2  |-  ( ph  ->  B  e.  X )
4 eleq1 2689 . . . . . 6  |-  ( x  =  A  ->  (
x  e.  X  <->  A  e.  X ) )
543anbi2d 1404 . . . . 5  |-  ( x  =  A  ->  (
( ph  /\  x  e.  X  /\  y  e.  X )  <->  ( ph  /\  A  e.  X  /\  y  e.  X )
) )
6 oveq1 6657 . . . . . . 7  |-  ( x  =  A  ->  (
x  .+  y )  =  ( A  .+  y ) )
76fveq2d 6195 . . . . . 6  |-  ( x  =  A  ->  ( F `  ( x  .+  y ) )  =  ( F `  ( A  .+  y ) ) )
8 fveq2 6191 . . . . . . 7  |-  ( x  =  A  ->  ( F `  x )  =  ( F `  A ) )
98oveq1d 6665 . . . . . 6  |-  ( x  =  A  ->  (
( F `  x
)  .+^  ( F `  y ) )  =  ( ( F `  A )  .+^  ( F `
 y ) ) )
107, 9eqeq12d 2637 . . . . 5  |-  ( x  =  A  ->  (
( F `  (
x  .+  y )
)  =  ( ( F `  x ) 
.+^  ( F `  y ) )  <->  ( F `  ( A  .+  y
) )  =  ( ( F `  A
)  .+^  ( F `  y ) ) ) )
115, 10imbi12d 334 . . . 4  |-  ( x  =  A  ->  (
( ( ph  /\  x  e.  X  /\  y  e.  X )  ->  ( F `  (
x  .+  y )
)  =  ( ( F `  x ) 
.+^  ( F `  y ) ) )  <-> 
( ( ph  /\  A  e.  X  /\  y  e.  X )  ->  ( F `  ( A  .+  y ) )  =  ( ( F `
 A )  .+^  ( F `  y ) ) ) ) )
12 eleq1 2689 . . . . . 6  |-  ( y  =  B  ->  (
y  e.  X  <->  B  e.  X ) )
13123anbi3d 1405 . . . . 5  |-  ( y  =  B  ->  (
( ph  /\  A  e.  X  /\  y  e.  X )  <->  ( ph  /\  A  e.  X  /\  B  e.  X )
) )
14 oveq2 6658 . . . . . . 7  |-  ( y  =  B  ->  ( A  .+  y )  =  ( A  .+  B
) )
1514fveq2d 6195 . . . . . 6  |-  ( y  =  B  ->  ( F `  ( A  .+  y ) )  =  ( F `  ( A  .+  B ) ) )
16 fveq2 6191 . . . . . . 7  |-  ( y  =  B  ->  ( F `  y )  =  ( F `  B ) )
1716oveq2d 6666 . . . . . 6  |-  ( y  =  B  ->  (
( F `  A
)  .+^  ( F `  y ) )  =  ( ( F `  A )  .+^  ( F `
 B ) ) )
1815, 17eqeq12d 2637 . . . . 5  |-  ( y  =  B  ->  (
( F `  ( A  .+  y ) )  =  ( ( F `
 A )  .+^  ( F `  y ) )  <->  ( F `  ( A  .+  B ) )  =  ( ( F `  A ) 
.+^  ( F `  B ) ) ) )
1913, 18imbi12d 334 . . . 4  |-  ( y  =  B  ->  (
( ( ph  /\  A  e.  X  /\  y  e.  X )  ->  ( F `  ( A  .+  y ) )  =  ( ( F `
 A )  .+^  ( F `  y ) ) )  <->  ( ( ph  /\  A  e.  X  /\  B  e.  X
)  ->  ( F `  ( A  .+  B
) )  =  ( ( F `  A
)  .+^  ( F `  B ) ) ) ) )
20 ghmgrp.f . . . 4  |-  ( (
ph  /\  x  e.  X  /\  y  e.  X
)  ->  ( F `  ( x  .+  y
) )  =  ( ( F `  x
)  .+^  ( F `  y ) ) )
2111, 19, 20vtocl2g 3270 . . 3  |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( ( ph  /\  A  e.  X  /\  B  e.  X )  ->  ( F `  ( A  .+  B ) )  =  ( ( F `
 A )  .+^  ( F `  B ) ) ) )
222, 3, 21syl2anc 693 . 2  |-  ( ph  ->  ( ( ph  /\  A  e.  X  /\  B  e.  X )  ->  ( F `  ( A  .+  B ) )  =  ( ( F `
 A )  .+^  ( F `  B ) ) ) )
231, 2, 3, 22mp3and 1427 1  |-  ( ph  ->  ( F `  ( A  .+  B ) )  =  ( ( F `
 A )  .+^  ( F `  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 1037    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653
This theorem is referenced by:  mhmid  17536  mhmmnd  17537  ghmgrp  17539  ghmcmn  18237
  Copyright terms: Public domain W3C validator