MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmgrp Structured version   Visualization version   Unicode version

Theorem ghmgrp 17539
Description: The image of a group  G under a group homomorphism  F is a group. This is a stronger result than that usually found in the literature, since the target of the homomorphism (operator  O in our model) need not have any of the properties of a group as a prerequisite. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 25-Jan-2020.)
Hypotheses
Ref Expression
ghmgrp.f  |-  ( (
ph  /\  x  e.  X  /\  y  e.  X
)  ->  ( F `  ( x  .+  y
) )  =  ( ( F `  x
)  .+^  ( F `  y ) ) )
ghmgrp.x  |-  X  =  ( Base `  G
)
ghmgrp.y  |-  Y  =  ( Base `  H
)
ghmgrp.p  |-  .+  =  ( +g  `  G )
ghmgrp.q  |-  .+^  =  ( +g  `  H )
ghmgrp.1  |-  ( ph  ->  F : X -onto-> Y
)
ghmgrp.3  |-  ( ph  ->  G  e.  Grp )
Assertion
Ref Expression
ghmgrp  |-  ( ph  ->  H  e.  Grp )
Distinct variable groups:    x, F, y    x, G, y    x,  .+ , y    x, H, y   
x, X, y    x, Y, y    x,  .+^ , y    ph, x, y

Proof of Theorem ghmgrp
Dummy variables  a 
f  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmgrp.f . . 3  |-  ( (
ph  /\  x  e.  X  /\  y  e.  X
)  ->  ( F `  ( x  .+  y
) )  =  ( ( F `  x
)  .+^  ( F `  y ) ) )
2 ghmgrp.x . . 3  |-  X  =  ( Base `  G
)
3 ghmgrp.y . . 3  |-  Y  =  ( Base `  H
)
4 ghmgrp.p . . 3  |-  .+  =  ( +g  `  G )
5 ghmgrp.q . . 3  |-  .+^  =  ( +g  `  H )
6 ghmgrp.1 . . 3  |-  ( ph  ->  F : X -onto-> Y
)
7 ghmgrp.3 . . . 4  |-  ( ph  ->  G  e.  Grp )
8 grpmnd 17429 . . . 4  |-  ( G  e.  Grp  ->  G  e.  Mnd )
97, 8syl 17 . . 3  |-  ( ph  ->  G  e.  Mnd )
101, 2, 3, 4, 5, 6, 9mhmmnd 17537 . 2  |-  ( ph  ->  H  e.  Mnd )
11 fof 6115 . . . . . . . 8  |-  ( F : X -onto-> Y  ->  F : X --> Y )
126, 11syl 17 . . . . . . 7  |-  ( ph  ->  F : X --> Y )
1312ad3antrrr 766 . . . . . 6  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  F : X
--> Y )
147ad3antrrr 766 . . . . . . 7  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  G  e.  Grp )
15 simplr 792 . . . . . . 7  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  i  e.  X )
16 eqid 2622 . . . . . . . 8  |-  ( invg `  G )  =  ( invg `  G )
172, 16grpinvcl 17467 . . . . . . 7  |-  ( ( G  e.  Grp  /\  i  e.  X )  ->  ( ( invg `  G ) `  i
)  e.  X )
1814, 15, 17syl2anc 693 . . . . . 6  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  ( ( invg `  G ) `
 i )  e.  X )
1913, 18ffvelrnd 6360 . . . . 5  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  ( F `  ( ( invg `  G ) `  i
) )  e.  Y
)
2013adant1r 1319 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  X )  /\  x  e.  X  /\  y  e.  X )  ->  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
 y ) ) )
217, 17sylan 488 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  X )  ->  (
( invg `  G ) `  i
)  e.  X )
22 simpr 477 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  X )  ->  i  e.  X )
2320, 21, 22mhmlem 17535 . . . . . . . 8  |-  ( (
ph  /\  i  e.  X )  ->  ( F `  ( (
( invg `  G ) `  i
)  .+  i )
)  =  ( ( F `  ( ( invg `  G
) `  i )
)  .+^  ( F `  i ) ) )
2423adantlr 751 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X )  ->  ( F `  ( (
( invg `  G ) `  i
)  .+  i )
)  =  ( ( F `  ( ( invg `  G
) `  i )
)  .+^  ( F `  i ) ) )
2524adantr 481 . . . . . 6  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  ( F `  ( ( ( invg `  G ) `
 i )  .+  i ) )  =  ( ( F `  ( ( invg `  G ) `  i
) )  .+^  ( F `
 i ) ) )
26 eqid 2622 . . . . . . . . . 10  |-  ( 0g
`  G )  =  ( 0g `  G
)
272, 4, 26, 16grplinv 17468 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  i  e.  X )  ->  ( ( ( invg `  G ) `
 i )  .+  i )  =  ( 0g `  G ) )
2827fveq2d 6195 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  i  e.  X )  ->  ( F `  (
( ( invg `  G ) `  i
)  .+  i )
)  =  ( F `
 ( 0g `  G ) ) )
2914, 15, 28syl2anc 693 . . . . . . 7  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  ( F `  ( ( ( invg `  G ) `
 i )  .+  i ) )  =  ( F `  ( 0g `  G ) ) )
301, 2, 3, 4, 5, 6, 9, 26mhmid 17536 . . . . . . . 8  |-  ( ph  ->  ( F `  ( 0g `  G ) )  =  ( 0g `  H ) )
3130ad3antrrr 766 . . . . . . 7  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  ( F `  ( 0g `  G
) )  =  ( 0g `  H ) )
3229, 31eqtrd 2656 . . . . . 6  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  ( F `  ( ( ( invg `  G ) `
 i )  .+  i ) )  =  ( 0g `  H
) )
33 simpr 477 . . . . . . 7  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  ( F `  i )  =  a )
3433oveq2d 6666 . . . . . 6  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  ( ( F `  ( ( invg `  G ) `
 i ) ) 
.+^  ( F `  i ) )  =  ( ( F `  ( ( invg `  G ) `  i
) )  .+^  a ) )
3525, 32, 343eqtr3rd 2665 . . . . 5  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  ( ( F `  ( ( invg `  G ) `
 i ) ) 
.+^  a )  =  ( 0g `  H
) )
36 oveq1 6657 . . . . . . 7  |-  ( f  =  ( F `  ( ( invg `  G ) `  i
) )  ->  (
f  .+^  a )  =  ( ( F `  ( ( invg `  G ) `  i
) )  .+^  a ) )
3736eqeq1d 2624 . . . . . 6  |-  ( f  =  ( F `  ( ( invg `  G ) `  i
) )  ->  (
( f  .+^  a )  =  ( 0g `  H )  <->  ( ( F `  ( ( invg `  G ) `
 i ) ) 
.+^  a )  =  ( 0g `  H
) ) )
3837rspcev 3309 . . . . 5  |-  ( ( ( F `  (
( invg `  G ) `  i
) )  e.  Y  /\  ( ( F `  ( ( invg `  G ) `  i
) )  .+^  a )  =  ( 0g `  H ) )  ->  E. f  e.  Y  ( f  .+^  a )  =  ( 0g `  H ) )
3919, 35, 38syl2anc 693 . . . 4  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  E. f  e.  Y  ( f  .+^  a )  =  ( 0g `  H ) )
40 foelrni 6244 . . . . 5  |-  ( ( F : X -onto-> Y  /\  a  e.  Y
)  ->  E. i  e.  X  ( F `  i )  =  a )
416, 40sylan 488 . . . 4  |-  ( (
ph  /\  a  e.  Y )  ->  E. i  e.  X  ( F `  i )  =  a )
4239, 41r19.29a 3078 . . 3  |-  ( (
ph  /\  a  e.  Y )  ->  E. f  e.  Y  ( f  .+^  a )  =  ( 0g `  H ) )
4342ralrimiva 2966 . 2  |-  ( ph  ->  A. a  e.  Y  E. f  e.  Y  ( f  .+^  a )  =  ( 0g `  H ) )
44 eqid 2622 . . 3  |-  ( 0g
`  H )  =  ( 0g `  H
)
453, 5, 44isgrp 17428 . 2  |-  ( H  e.  Grp  <->  ( H  e.  Mnd  /\  A. a  e.  Y  E. f  e.  Y  ( f  .+^  a )  =  ( 0g `  H ) ) )
4610, 43, 45sylanbrc 698 1  |-  ( ph  ->  H  e.  Grp )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   -->wf 5884   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   0gc0g 16100   Mndcmnd 17294   Grpcgrp 17422   invgcminusg 17423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426
This theorem is referenced by:  ghmfghm  18236  ghmabl  18238
  Copyright terms: Public domain W3C validator