| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mhmid | Structured version Visualization version Unicode version | ||
| Description: A surjective monoid morphism preserves identity element. (Contributed by Thierry Arnoux, 25-Jan-2020.) |
| Ref | Expression |
|---|---|
| ghmgrp.f |
|
| ghmgrp.x |
|
| ghmgrp.y |
|
| ghmgrp.p |
|
| ghmgrp.q |
|
| ghmgrp.1 |
|
| mhmmnd.3 |
|
| mhmid.0 |
|
| Ref | Expression |
|---|---|
| mhmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmgrp.y |
. 2
| |
| 2 | eqid 2622 |
. 2
| |
| 3 | ghmgrp.q |
. 2
| |
| 4 | ghmgrp.1 |
. . . 4
| |
| 5 | fof 6115 |
. . . 4
| |
| 6 | 4, 5 | syl 17 |
. . 3
|
| 7 | mhmmnd.3 |
. . . 4
| |
| 8 | ghmgrp.x |
. . . . 5
| |
| 9 | mhmid.0 |
. . . . 5
| |
| 10 | 8, 9 | mndidcl 17308 |
. . . 4
|
| 11 | 7, 10 | syl 17 |
. . 3
|
| 12 | 6, 11 | ffvelrnd 6360 |
. 2
|
| 13 | simplll 798 |
. . . . . . 7
| |
| 14 | ghmgrp.f |
. . . . . . 7
| |
| 15 | 13, 14 | syl3an1 1359 |
. . . . . 6
|
| 16 | 7 | ad3antrrr 766 |
. . . . . . 7
|
| 17 | 16, 10 | syl 17 |
. . . . . 6
|
| 18 | simplr 792 |
. . . . . 6
| |
| 19 | 15, 17, 18 | mhmlem 17535 |
. . . . 5
|
| 20 | ghmgrp.p |
. . . . . . . 8
| |
| 21 | 8, 20, 9 | mndlid 17311 |
. . . . . . 7
|
| 22 | 16, 18, 21 | syl2anc 693 |
. . . . . 6
|
| 23 | 22 | fveq2d 6195 |
. . . . 5
|
| 24 | 19, 23 | eqtr3d 2658 |
. . . 4
|
| 25 | simpr 477 |
. . . . 5
| |
| 26 | 25 | oveq2d 6666 |
. . . 4
|
| 27 | 24, 26, 25 | 3eqtr3d 2664 |
. . 3
|
| 28 | foelrni 6244 |
. . . 4
| |
| 29 | 4, 28 | sylan 488 |
. . 3
|
| 30 | 27, 29 | r19.29a 3078 |
. 2
|
| 31 | 15, 18, 17 | mhmlem 17535 |
. . . . 5
|
| 32 | 8, 20, 9 | mndrid 17312 |
. . . . . . 7
|
| 33 | 16, 18, 32 | syl2anc 693 |
. . . . . 6
|
| 34 | 33 | fveq2d 6195 |
. . . . 5
|
| 35 | 31, 34 | eqtr3d 2658 |
. . . 4
|
| 36 | 25 | oveq1d 6665 |
. . . 4
|
| 37 | 35, 36, 25 | 3eqtr3d 2664 |
. . 3
|
| 38 | 37, 29 | r19.29a 3078 |
. 2
|
| 39 | 1, 2, 3, 12, 30, 38 | ismgmid2 17267 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fo 5894 df-fv 5896 df-riota 6611 df-ov 6653 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 |
| This theorem is referenced by: mhmfmhm 17538 ghmgrp 17539 |
| Copyright terms: Public domain | W3C validator |