MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplval Structured version   Visualization version   Unicode version

Theorem mplval 19428
Description: Value of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 25-Jun-2019.)
Hypotheses
Ref Expression
mplval.p  |-  P  =  ( I mPoly  R )
mplval.s  |-  S  =  ( I mPwSer  R )
mplval.b  |-  B  =  ( Base `  S
)
mplval.z  |-  .0.  =  ( 0g `  R )
mplval.u  |-  U  =  { f  e.  B  |  f finSupp  .0.  }
Assertion
Ref Expression
mplval  |-  P  =  ( Ss  U )
Distinct variable groups:    B, f    f, I    R, f    .0. , f
Allowed substitution hints:    P( f)    S( f)    U( f)

Proof of Theorem mplval
Dummy variables  i 
r  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplval.p . 2  |-  P  =  ( I mPoly  R )
2 ovexd 6680 . . . . 5  |-  ( ( i  =  I  /\  r  =  R )  ->  ( i mPwSer  r )  e.  _V )
3 id 22 . . . . . . . 8  |-  ( s  =  ( i mPwSer  r
)  ->  s  =  ( i mPwSer  r )
)
4 oveq12 6659 . . . . . . . 8  |-  ( ( i  =  I  /\  r  =  R )  ->  ( i mPwSer  r )  =  ( I mPwSer  R
) )
53, 4sylan9eqr 2678 . . . . . . 7  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  s  =  ( I mPwSer  R ) )
6 mplval.s . . . . . . 7  |-  S  =  ( I mPwSer  R )
75, 6syl6eqr 2674 . . . . . 6  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  s  =  S )
87fveq2d 6195 . . . . . . . . 9  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  ( Base `  s )  =  (
Base `  S )
)
9 mplval.b . . . . . . . . 9  |-  B  =  ( Base `  S
)
108, 9syl6eqr 2674 . . . . . . . 8  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  ( Base `  s )  =  B )
11 simplr 792 . . . . . . . . . . 11  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  r  =  R )
1211fveq2d 6195 . . . . . . . . . 10  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  ( 0g `  r )  =  ( 0g `  R ) )
13 mplval.z . . . . . . . . . 10  |-  .0.  =  ( 0g `  R )
1412, 13syl6eqr 2674 . . . . . . . . 9  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  ( 0g `  r )  =  .0.  )
1514breq2d 4665 . . . . . . . 8  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  ( f finSupp  ( 0g `  r )  <-> 
f finSupp  .0.  ) )
1610, 15rabeqbidv 3195 . . . . . . 7  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  { f  e.  ( Base `  s
)  |  f finSupp  ( 0g `  r ) }  =  { f  e.  B  |  f finSupp  .0.  } )
17 mplval.u . . . . . . 7  |-  U  =  { f  e.  B  |  f finSupp  .0.  }
1816, 17syl6eqr 2674 . . . . . 6  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  { f  e.  ( Base `  s
)  |  f finSupp  ( 0g `  r ) }  =  U )
197, 18oveq12d 6668 . . . . 5  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  ( ss  {
f  e.  ( Base `  s )  |  f finSupp 
( 0g `  r
) } )  =  ( Ss  U ) )
202, 19csbied 3560 . . . 4  |-  ( ( i  =  I  /\  r  =  R )  ->  [_ ( i mPwSer  r
)  /  s ]_ ( ss  { f  e.  (
Base `  s )  |  f finSupp  ( 0g `  r ) } )  =  ( Ss  U ) )
21 df-mpl 19358 . . . 4  |- mPoly  =  ( i  e.  _V , 
r  e.  _V  |->  [_ ( i mPwSer  r )  /  s ]_ (
ss 
{ f  e.  (
Base `  s )  |  f finSupp  ( 0g `  r ) } ) )
22 ovex 6678 . . . 4  |-  ( Ss  U )  e.  _V
2320, 21, 22ovmpt2a 6791 . . 3  |-  ( ( I  e.  _V  /\  R  e.  _V )  ->  ( I mPoly  R )  =  ( Ss  U ) )
24 reldmmpl 19427 . . . . . 6  |-  Rel  dom mPoly
2524ovprc 6683 . . . . 5  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  ( I mPoly  R )  =  (/) )
26 ress0 15934 . . . . 5  |-  ( (/)s  U )  =  (/)
2725, 26syl6eqr 2674 . . . 4  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  ( I mPoly  R )  =  ( (/)s  U ) )
28 reldmpsr 19361 . . . . . . 7  |-  Rel  dom mPwSer
2928ovprc 6683 . . . . . 6  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  ( I mPwSer  R )  =  (/) )
306, 29syl5eq 2668 . . . . 5  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  S  =  (/) )
3130oveq1d 6665 . . . 4  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  ( Ss  U )  =  (
(/)s  U ) )
3227, 31eqtr4d 2659 . . 3  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  ( I mPoly  R )  =  ( Ss  U ) )
3323, 32pm2.61i 176 . 2  |-  ( I mPoly 
R )  =  ( Ss  U )
341, 33eqtri 2644 1  |-  P  =  ( Ss  U )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200   [_csb 3533   (/)c0 3915   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   finSupp cfsupp 8275   Basecbs 15857   ↾s cress 15858   0gc0g 16100   mPwSer cmps 19351   mPoly cmpl 19353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-slot 15861  df-base 15863  df-ress 15865  df-psr 19356  df-mpl 19358
This theorem is referenced by:  mplbas  19429  mplval2  19431
  Copyright terms: Public domain W3C validator