Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpteq12da Structured version   Visualization version   Unicode version

Theorem mpteq12da 39452
Description: An equality inference for the maps to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
mpteq12da.1  |-  F/ x ph
mpteq12da.2  |-  ( ph  ->  A  =  C )
mpteq12da.3  |-  ( (
ph  /\  x  e.  A )  ->  B  =  D )
Assertion
Ref Expression
mpteq12da  |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  C  |->  D ) )

Proof of Theorem mpteq12da
StepHypRef Expression
1 mpteq12da.1 . . 3  |-  F/ x ph
2 mpteq12da.2 . . 3  |-  ( ph  ->  A  =  C )
31, 2alrimi 2082 . 2  |-  ( ph  ->  A. x  A  =  C )
4 mpteq12da.3 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  B  =  D )
54ex 450 . . 3  |-  ( ph  ->  ( x  e.  A  ->  B  =  D ) )
61, 5ralrimi 2957 . 2  |-  ( ph  ->  A. x  e.  A  B  =  D )
7 mpteq12f 4731 . 2  |-  ( ( A. x  A  =  C  /\  A. x  e.  A  B  =  D )  ->  (
x  e.  A  |->  B )  =  ( x  e.  C  |->  D ) )
83, 6, 7syl2anc 693 1  |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  C  |->  D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384   A.wal 1481    = wceq 1483   F/wnf 1708    e. wcel 1990   A.wral 2912    |-> cmpt 4729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-ral 2917  df-opab 4713  df-mpt 4730
This theorem is referenced by:  smflimmpt  41016  smflimsupmpt  41035  smfliminfmpt  41038
  Copyright terms: Public domain W3C validator