| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mptrcllem | Structured version Visualization version Unicode version | ||
| Description: Show two versions of a closure with reflexive properties are equal. (Contributed by RP, 19-Oct-2020.) |
| Ref | Expression |
|---|---|
| mptrcllem.ex1 |
|
| mptrcllem.ex2 |
|
| mptrcllem.hyp1 |
|
| mptrcllem.hyp2 |
|
| mptrcllem.hyp3 |
|
| mptrcllem.sub1 |
|
| mptrcllem.sub2 |
|
| mptrcllem.sub3 |
|
| Ref | Expression |
|---|---|
| mptrcllem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptrcllem.ex2 |
. . . 4
| |
| 2 | mptrcllem.sub1 |
. . . . 5
| |
| 3 | mptrcllem.sub2 |
. . . . 5
| |
| 4 | 2, 3 | anbi12d 747 |
. . . 4
|
| 5 | id 22 |
. . . . . . . . 9
| |
| 6 | 5 | unssad 3790 |
. . . . . . . 8
|
| 7 | 6 | adantr 481 |
. . . . . . 7
|
| 8 | 7 | a1i 11 |
. . . . . 6
|
| 9 | 8 | alrimiv 1855 |
. . . . 5
|
| 10 | ssintab 4494 |
. . . . 5
| |
| 11 | 9, 10 | sylibr 224 |
. . . 4
|
| 12 | mptrcllem.hyp1 |
. . . . 5
| |
| 13 | mptrcllem.hyp2 |
. . . . 5
| |
| 14 | 12, 13 | jca 554 |
. . . 4
|
| 15 | 1, 4, 11, 14 | clublem 37917 |
. . 3
|
| 16 | mptrcllem.ex1 |
. . . 4
| |
| 17 | mptrcllem.sub3 |
. . . 4
| |
| 18 | simpl 473 |
. . . . . . . . 9
| |
| 19 | dmss 5323 |
. . . . . . . . . . . . 13
| |
| 20 | rnss 5354 |
. . . . . . . . . . . . 13
| |
| 21 | 19, 20 | jca 554 |
. . . . . . . . . . . 12
|
| 22 | unss12 3785 |
. . . . . . . . . . . 12
| |
| 23 | ssres2 5425 |
. . . . . . . . . . . 12
| |
| 24 | 21, 22, 23 | 3syl 18 |
. . . . . . . . . . 11
|
| 25 | 24 | adantr 481 |
. . . . . . . . . 10
|
| 26 | simprr 796 |
. . . . . . . . . 10
| |
| 27 | 25, 26 | sstrd 3613 |
. . . . . . . . 9
|
| 28 | 18, 27 | jca 554 |
. . . . . . . 8
|
| 29 | 28 | a1i 11 |
. . . . . . 7
|
| 30 | unss 3787 |
. . . . . . 7
| |
| 31 | 29, 30 | syl6ib 241 |
. . . . . 6
|
| 32 | 31 | alrimiv 1855 |
. . . . 5
|
| 33 | ssintab 4494 |
. . . . 5
| |
| 34 | 32, 33 | sylibr 224 |
. . . 4
|
| 35 | mptrcllem.hyp3 |
. . . 4
| |
| 36 | 16, 17, 34, 35 | clublem 37917 |
. . 3
|
| 37 | 15, 36 | eqssd 3620 |
. 2
|
| 38 | 37 | mpteq2ia 4740 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-int 4476 df-br 4654 df-opab 4713 df-mpt 4730 df-xp 5120 df-cnv 5122 df-dm 5124 df-rn 5125 df-res 5126 |
| This theorem is referenced by: dfrtrcl5 37936 |
| Copyright terms: Public domain | W3C validator |