| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqssd | Structured version Visualization version Unicode version | ||
| Description: Equality deduction from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 27-Jun-2004.) |
| Ref | Expression |
|---|---|
| eqssd.1 |
|
| eqssd.2 |
|
| Ref | Expression |
|---|---|
| eqssd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqssd.1 |
. 2
| |
| 2 | eqssd.2 |
. 2
| |
| 3 | eqss 3618 |
. 2
| |
| 4 | 1, 2, 3 | sylanbrc 698 |
1
|
| Copyright terms: Public domain | W3C validator |