MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcnsrec Structured version   Visualization version   Unicode version

Theorem mulcnsrec 9965
Description: Technical trick to permit re-use of some equivalence class lemmas for operation laws. The trick involves ecid 7812, which shows that the coset of the converse epsilon relation (which is not an equivalence relation) leaves a set unchanged. See also dfcnqs 9963.

Note: This is the last lemma (from which the axioms will be derived) in the construction of real and complex numbers. The construction starts at cnpi 9666. (Contributed by NM, 13-Aug-1995.) (New usage is discouraged.)

Assertion
Ref Expression
mulcnsrec  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( [ <. A ,  B >. ] `'  _E  x.  [ <. C ,  D >. ] `'  _E  )  =  [ <. ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) ) ,  ( ( B  .R  C )  +R  ( A  .R  D
) ) >. ] `'  _E  )

Proof of Theorem mulcnsrec
StepHypRef Expression
1 mulcnsr 9957 . 2  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( <. A ,  B >.  x.  <. C ,  D >. )  =  <. ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) ) ,  ( ( B  .R  C )  +R  ( A  .R  D ) ) >.
)
2 opex 4932 . . . 4  |-  <. A ,  B >.  e.  _V
32ecid 7812 . . 3  |-  [ <. A ,  B >. ] `'  _E  =  <. A ,  B >.
4 opex 4932 . . . 4  |-  <. C ,  D >.  e.  _V
54ecid 7812 . . 3  |-  [ <. C ,  D >. ] `'  _E  =  <. C ,  D >.
63, 5oveq12i 6662 . 2  |-  ( [
<. A ,  B >. ] `'  _E  x.  [ <. C ,  D >. ] `'  _E  )  =  ( <. A ,  B >.  x. 
<. C ,  D >. )
7 opex 4932 . . 3  |-  <. (
( A  .R  C
)  +R  ( -1R 
.R  ( B  .R  D ) ) ) ,  ( ( B  .R  C )  +R  ( A  .R  D
) ) >.  e.  _V
87ecid 7812 . 2  |-  [ <. ( ( A  .R  C
)  +R  ( -1R 
.R  ( B  .R  D ) ) ) ,  ( ( B  .R  C )  +R  ( A  .R  D
) ) >. ] `'  _E  =  <. ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) ) ,  ( ( B  .R  C
)  +R  ( A  .R  D ) )
>.
91, 6, 83eqtr4g 2681 1  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( [ <. A ,  B >. ] `'  _E  x.  [ <. C ,  D >. ] `'  _E  )  =  [ <. ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) ) ,  ( ( B  .R  C )  +R  ( A  .R  D
) ) >. ] `'  _E  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   <.cop 4183    _E cep 5028   `'ccnv 5113  (class class class)co 6650   [cec 7740   R.cnr 9687   -1Rcm1r 9690    +R cplr 9691    .R cmr 9692    x. cmul 9941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-eprel 5029  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-ec 7744  df-c 9942  df-mul 9948
This theorem is referenced by:  axmulcom  9976  axmulass  9978  axdistr  9979
  Copyright terms: Public domain W3C validator