MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcnsr Structured version   Visualization version   Unicode version

Theorem mulcnsr 9957
Description: Multiplication of complex numbers in terms of signed reals. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
mulcnsr  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( <. A ,  B >.  x.  <. C ,  D >. )  =  <. ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) ) ,  ( ( B  .R  C )  +R  ( A  .R  D ) ) >.
)

Proof of Theorem mulcnsr
Dummy variables  x  y  z  w  v  u  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 4932 . 2  |-  <. (
( A  .R  C
)  +R  ( -1R 
.R  ( B  .R  D ) ) ) ,  ( ( B  .R  C )  +R  ( A  .R  D
) ) >.  e.  _V
2 oveq1 6657 . . . . 5  |-  ( w  =  A  ->  (
w  .R  u )  =  ( A  .R  u ) )
3 oveq1 6657 . . . . . 6  |-  ( v  =  B  ->  (
v  .R  f )  =  ( B  .R  f ) )
43oveq2d 6666 . . . . 5  |-  ( v  =  B  ->  ( -1R  .R  ( v  .R  f ) )  =  ( -1R  .R  ( B  .R  f ) ) )
52, 4oveqan12d 6669 . . . 4  |-  ( ( w  =  A  /\  v  =  B )  ->  ( ( w  .R  u )  +R  ( -1R  .R  ( v  .R  f ) ) )  =  ( ( A  .R  u )  +R  ( -1R  .R  ( B  .R  f ) ) ) )
6 oveq1 6657 . . . . 5  |-  ( v  =  B  ->  (
v  .R  u )  =  ( B  .R  u ) )
7 oveq1 6657 . . . . 5  |-  ( w  =  A  ->  (
w  .R  f )  =  ( A  .R  f ) )
86, 7oveqan12rd 6670 . . . 4  |-  ( ( w  =  A  /\  v  =  B )  ->  ( ( v  .R  u )  +R  (
w  .R  f )
)  =  ( ( B  .R  u )  +R  ( A  .R  f ) ) )
95, 8opeq12d 4410 . . 3  |-  ( ( w  =  A  /\  v  =  B )  -> 
<. ( ( w  .R  u )  +R  ( -1R  .R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >.  =  <. ( ( A  .R  u
)  +R  ( -1R 
.R  ( B  .R  f ) ) ) ,  ( ( B  .R  u )  +R  ( A  .R  f
) ) >. )
10 oveq2 6658 . . . . 5  |-  ( u  =  C  ->  ( A  .R  u )  =  ( A  .R  C
) )
11 oveq2 6658 . . . . . 6  |-  ( f  =  D  ->  ( B  .R  f )  =  ( B  .R  D
) )
1211oveq2d 6666 . . . . 5  |-  ( f  =  D  ->  ( -1R  .R  ( B  .R  f ) )  =  ( -1R  .R  ( B  .R  D ) ) )
1310, 12oveqan12d 6669 . . . 4  |-  ( ( u  =  C  /\  f  =  D )  ->  ( ( A  .R  u )  +R  ( -1R  .R  ( B  .R  f ) ) )  =  ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) ) )
14 oveq2 6658 . . . . 5  |-  ( u  =  C  ->  ( B  .R  u )  =  ( B  .R  C
) )
15 oveq2 6658 . . . . 5  |-  ( f  =  D  ->  ( A  .R  f )  =  ( A  .R  D
) )
1614, 15oveqan12d 6669 . . . 4  |-  ( ( u  =  C  /\  f  =  D )  ->  ( ( B  .R  u )  +R  ( A  .R  f ) )  =  ( ( B  .R  C )  +R  ( A  .R  D
) ) )
1713, 16opeq12d 4410 . . 3  |-  ( ( u  =  C  /\  f  =  D )  -> 
<. ( ( A  .R  u )  +R  ( -1R  .R  ( B  .R  f ) ) ) ,  ( ( B  .R  u )  +R  ( A  .R  f
) ) >.  =  <. ( ( A  .R  C
)  +R  ( -1R 
.R  ( B  .R  D ) ) ) ,  ( ( B  .R  C )  +R  ( A  .R  D
) ) >. )
189, 17sylan9eq 2676 . 2  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  ->  <. ( ( w  .R  u )  +R  ( -1R  .R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >.  =  <. ( ( A  .R  C
)  +R  ( -1R 
.R  ( B  .R  D ) ) ) ,  ( ( B  .R  C )  +R  ( A  .R  D
) ) >. )
19 df-mul 9948 . . 3  |-  x.  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
) }
20 df-c 9942 . . . . . . 7  |-  CC  =  ( R.  X.  R. )
2120eleq2i 2693 . . . . . 6  |-  ( x  e.  CC  <->  x  e.  ( R.  X.  R. )
)
2220eleq2i 2693 . . . . . 6  |-  ( y  e.  CC  <->  y  e.  ( R.  X.  R. )
)
2321, 22anbi12i 733 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC )  <->  ( x  e.  ( R. 
X.  R. )  /\  y  e.  ( R.  X.  R. ) ) )
2423anbi1i 731 . . . 4  |-  ( ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
)  <->  ( ( x  e.  ( R.  X.  R. )  /\  y  e.  ( R.  X.  R. ) )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
) )
2524oprabbii 6710 . . 3  |-  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( R.  X.  R. )  /\  y  e.  ( R.  X.  R. )
)  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
) }
2619, 25eqtri 2644 . 2  |-  x.  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( R.  X.  R. )  /\  y  e.  ( R.  X.  R. )
)  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
) }
271, 18, 26ov3 6797 1  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( <. A ,  B >.  x.  <. C ,  D >. )  =  <. ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) ) ,  ( ( B  .R  C )  +R  ( A  .R  D ) ) >.
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   <.cop 4183    X. cxp 5112  (class class class)co 6650   {coprab 6651   R.cnr 9687   -1Rcm1r 9690    +R cplr 9691    .R cmr 9692   CCcc 9934    x. cmul 9941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-c 9942  df-mul 9948
This theorem is referenced by:  mulresr  9960  mulcnsrec  9965  axmulf  9967  axi2m1  9980  axcnre  9985
  Copyright terms: Public domain W3C validator