MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvrval2 Structured version   Visualization version   Unicode version

Theorem mvrval2 19422
Description: Value of the generating elements of the power series structure. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
mvrfval.v  |-  V  =  ( I mVar  R )
mvrfval.d  |-  D  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }
mvrfval.z  |-  .0.  =  ( 0g `  R )
mvrfval.o  |-  .1.  =  ( 1r `  R )
mvrfval.i  |-  ( ph  ->  I  e.  W )
mvrfval.r  |-  ( ph  ->  R  e.  Y )
mvrval.x  |-  ( ph  ->  X  e.  I )
mvrval2.f  |-  ( ph  ->  F  e.  D )
Assertion
Ref Expression
mvrval2  |-  ( ph  ->  ( ( V `  X ) `  F
)  =  if ( F  =  ( y  e.  I  |->  if ( y  =  X , 
1 ,  0 ) ) ,  .1.  ,  .0.  ) )
Distinct variable groups:    y, D    y, W    y, h, I   
h, X, y
Allowed substitution hints:    ph( y, h)    D( h)    R( y, h)    .1. ( y, h)    F( y, h)    V( y, h)    W( h)    Y( y, h)    .0. ( y, h)

Proof of Theorem mvrval2
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 mvrfval.v . . . 4  |-  V  =  ( I mVar  R )
2 mvrfval.d . . . 4  |-  D  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }
3 mvrfval.z . . . 4  |-  .0.  =  ( 0g `  R )
4 mvrfval.o . . . 4  |-  .1.  =  ( 1r `  R )
5 mvrfval.i . . . 4  |-  ( ph  ->  I  e.  W )
6 mvrfval.r . . . 4  |-  ( ph  ->  R  e.  Y )
7 mvrval.x . . . 4  |-  ( ph  ->  X  e.  I )
81, 2, 3, 4, 5, 6, 7mvrval 19421 . . 3  |-  ( ph  ->  ( V `  X
)  =  ( f  e.  D  |->  if ( f  =  ( y  e.  I  |->  if ( y  =  X , 
1 ,  0 ) ) ,  .1.  ,  .0.  ) ) )
98fveq1d 6193 . 2  |-  ( ph  ->  ( ( V `  X ) `  F
)  =  ( ( f  e.  D  |->  if ( f  =  ( y  e.  I  |->  if ( y  =  X ,  1 ,  0 ) ) ,  .1.  ,  .0.  ) ) `  F ) )
10 mvrval2.f . . 3  |-  ( ph  ->  F  e.  D )
11 eqeq1 2626 . . . . 5  |-  ( f  =  F  ->  (
f  =  ( y  e.  I  |->  if ( y  =  X , 
1 ,  0 ) )  <->  F  =  (
y  e.  I  |->  if ( y  =  X ,  1 ,  0 ) ) ) )
1211ifbid 4108 . . . 4  |-  ( f  =  F  ->  if ( f  =  ( y  e.  I  |->  if ( y  =  X ,  1 ,  0 ) ) ,  .1.  ,  .0.  )  =  if ( F  =  ( y  e.  I  |->  if ( y  =  X ,  1 ,  0 ) ) ,  .1.  ,  .0.  ) )
13 eqid 2622 . . . 4  |-  ( f  e.  D  |->  if ( f  =  ( y  e.  I  |->  if ( y  =  X , 
1 ,  0 ) ) ,  .1.  ,  .0.  ) )  =  ( f  e.  D  |->  if ( f  =  ( y  e.  I  |->  if ( y  =  X ,  1 ,  0 ) ) ,  .1.  ,  .0.  ) )
14 fvex 6201 . . . . . 6  |-  ( 1r
`  R )  e. 
_V
154, 14eqeltri 2697 . . . . 5  |-  .1.  e.  _V
16 fvex 6201 . . . . . 6  |-  ( 0g
`  R )  e. 
_V
173, 16eqeltri 2697 . . . . 5  |-  .0.  e.  _V
1815, 17ifex 4156 . . . 4  |-  if ( F  =  ( y  e.  I  |->  if ( y  =  X , 
1 ,  0 ) ) ,  .1.  ,  .0.  )  e.  _V
1912, 13, 18fvmpt 6282 . . 3  |-  ( F  e.  D  ->  (
( f  e.  D  |->  if ( f  =  ( y  e.  I  |->  if ( y  =  X ,  1 ,  0 ) ) ,  .1.  ,  .0.  )
) `  F )  =  if ( F  =  ( y  e.  I  |->  if ( y  =  X ,  1 ,  0 ) ) ,  .1.  ,  .0.  )
)
2010, 19syl 17 . 2  |-  ( ph  ->  ( ( f  e.  D  |->  if ( f  =  ( y  e.  I  |->  if ( y  =  X ,  1 ,  0 ) ) ,  .1.  ,  .0.  ) ) `  F
)  =  if ( F  =  ( y  e.  I  |->  if ( y  =  X , 
1 ,  0 ) ) ,  .1.  ,  .0.  ) )
219, 20eqtrd 2656 1  |-  ( ph  ->  ( ( V `  X ) `  F
)  =  if ( F  =  ( y  e.  I  |->  if ( y  =  X , 
1 ,  0 ) ) ,  .1.  ,  .0.  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200   ifcif 4086    |-> cmpt 4729   `'ccnv 5113   "cima 5117   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   Fincfn 7955   0cc0 9936   1c1 9937   NNcn 11020   NN0cn0 11292   0gc0g 16100   1rcur 18501   mVar cmvr 19352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-mvr 19357
This theorem is referenced by:  mvrid  19423  mvrf1  19425  mvrcl  19449
  Copyright terms: Public domain W3C validator