![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mvrval2 | Structured version Visualization version GIF version |
Description: Value of the generating elements of the power series structure. (Contributed by Mario Carneiro, 7-Jan-2015.) |
Ref | Expression |
---|---|
mvrfval.v | ⊢ 𝑉 = (𝐼 mVar 𝑅) |
mvrfval.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
mvrfval.z | ⊢ 0 = (0g‘𝑅) |
mvrfval.o | ⊢ 1 = (1r‘𝑅) |
mvrfval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
mvrfval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑌) |
mvrval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
mvrval2.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
Ref | Expression |
---|---|
mvrval2 | ⊢ (𝜑 → ((𝑉‘𝑋)‘𝐹) = if(𝐹 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mvrfval.v | . . . 4 ⊢ 𝑉 = (𝐼 mVar 𝑅) | |
2 | mvrfval.d | . . . 4 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
3 | mvrfval.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
4 | mvrfval.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
5 | mvrfval.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
6 | mvrfval.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑌) | |
7 | mvrval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
8 | 1, 2, 3, 4, 5, 6, 7 | mvrval 19421 | . . 3 ⊢ (𝜑 → (𝑉‘𝑋) = (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))) |
9 | 8 | fveq1d 6193 | . 2 ⊢ (𝜑 → ((𝑉‘𝑋)‘𝐹) = ((𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))‘𝐹)) |
10 | mvrval2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
11 | eqeq1 2626 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ↔ 𝐹 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) | |
12 | 11 | ifbid 4108 | . . . 4 ⊢ (𝑓 = 𝐹 → if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ) = if(𝐹 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )) |
13 | eqid 2622 | . . . 4 ⊢ (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )) = (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )) | |
14 | fvex 6201 | . . . . . 6 ⊢ (1r‘𝑅) ∈ V | |
15 | 4, 14 | eqeltri 2697 | . . . . 5 ⊢ 1 ∈ V |
16 | fvex 6201 | . . . . . 6 ⊢ (0g‘𝑅) ∈ V | |
17 | 3, 16 | eqeltri 2697 | . . . . 5 ⊢ 0 ∈ V |
18 | 15, 17 | ifex 4156 | . . . 4 ⊢ if(𝐹 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ) ∈ V |
19 | 12, 13, 18 | fvmpt 6282 | . . 3 ⊢ (𝐹 ∈ 𝐷 → ((𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))‘𝐹) = if(𝐹 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )) |
20 | 10, 19 | syl 17 | . 2 ⊢ (𝜑 → ((𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))‘𝐹) = if(𝐹 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )) |
21 | 9, 20 | eqtrd 2656 | 1 ⊢ (𝜑 → ((𝑉‘𝑋)‘𝐹) = if(𝐹 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 {crab 2916 Vcvv 3200 ifcif 4086 ↦ cmpt 4729 ◡ccnv 5113 “ cima 5117 ‘cfv 5888 (class class class)co 6650 ↑𝑚 cmap 7857 Fincfn 7955 0cc0 9936 1c1 9937 ℕcn 11020 ℕ0cn0 11292 0gc0g 16100 1rcur 18501 mVar cmvr 19352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-mvr 19357 |
This theorem is referenced by: mvrid 19423 mvrf1 19425 mvrcl 19449 |
Copyright terms: Public domain | W3C validator |