Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  n0el2 Structured version   Visualization version   Unicode version

Theorem n0el2 34103
Description: Two ways of expressing that the empty set is not an element of a class. (Contributed by Peter Mazsa, 31-Jan-2018.)
Assertion
Ref Expression
n0el2  |-  ( -.  (/)  e.  A  <->  dom  ( `'  _E  |`  A )  =  A )

Proof of Theorem n0el2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmopab3 5337 . 2  |-  ( A. x  e.  A  E. y  y  e.  x  <->  dom 
{ <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  x ) }  =  A )
2 n0el 3940 . 2  |-  ( -.  (/)  e.  A  <->  A. x  e.  A  E. y 
y  e.  x )
3 cnvepres 34066 . . . 4  |-  ( `'  _E  |`  A )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  x ) }
43dmeqi 5325 . . 3  |-  dom  ( `'  _E  |`  A )  =  dom  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  x ) }
54eqeq1i 2627 . 2  |-  ( dom  ( `'  _E  |`  A )  =  A  <->  dom  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  x ) }  =  A )
61, 2, 53bitr4i 292 1  |-  ( -.  (/)  e.  A  <->  dom  ( `'  _E  |`  A )  =  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   (/)c0 3915   {copab 4712    _E cep 5028   `'ccnv 5113   dom cdm 5114    |` cres 5116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-eprel 5029  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-res 5126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator