| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ndmaovcom | Structured version Visualization version Unicode version | ||
| Description: Any operation is commutative outside its domain, analogous to ndmovcom 6821. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| Ref | Expression |
|---|---|
| ndmaov.1 |
|
| Ref | Expression |
|---|---|
| ndmaovcom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxp 5146 |
. . . 4
| |
| 2 | ndmaov.1 |
. . . . . 6
| |
| 3 | 2 | eqcomi 2631 |
. . . . 5
|
| 4 | 3 | eleq2i 2693 |
. . . 4
|
| 5 | 1, 4 | bitr3i 266 |
. . 3
|
| 6 | ndmaov 41263 |
. . 3
| |
| 7 | 5, 6 | sylnbi 320 |
. 2
|
| 8 | ancom 466 |
. . . 4
| |
| 9 | opelxp 5146 |
. . . 4
| |
| 10 | 3 | eleq2i 2693 |
. . . 4
|
| 11 | 8, 9, 10 | 3bitr2i 288 |
. . 3
|
| 12 | ndmaov 41263 |
. . 3
| |
| 13 | 11, 12 | sylnbi 320 |
. 2
|
| 14 | 7, 13 | eqtr4d 2659 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-opab 4713 df-xp 5120 df-fv 5896 df-dfat 41196 df-afv 41197 df-aov 41198 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |