MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndmovcom Structured version   Visualization version   Unicode version

Theorem ndmovcom 6821
Description: Any operation is commutative outside its domain. (Contributed by NM, 24-Aug-1995.)
Hypothesis
Ref Expression
ndmov.1  |-  dom  F  =  ( S  X.  S )
Assertion
Ref Expression
ndmovcom  |-  ( -.  ( A  e.  S  /\  B  e.  S
)  ->  ( A F B )  =  ( B F A ) )

Proof of Theorem ndmovcom
StepHypRef Expression
1 ndmov.1 . . 3  |-  dom  F  =  ( S  X.  S )
21ndmov 6818 . 2  |-  ( -.  ( A  e.  S  /\  B  e.  S
)  ->  ( A F B )  =  (/) )
3 ancom 466 . . 3  |-  ( ( A  e.  S  /\  B  e.  S )  <->  ( B  e.  S  /\  A  e.  S )
)
41ndmov 6818 . . 3  |-  ( -.  ( B  e.  S  /\  A  e.  S
)  ->  ( B F A )  =  (/) )
53, 4sylnbi 320 . 2  |-  ( -.  ( A  e.  S  /\  B  e.  S
)  ->  ( B F A )  =  (/) )
62, 5eqtr4d 2659 1  |-  ( -.  ( A  e.  S  /\  B  e.  S
)  ->  ( A F B )  =  ( B F A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   (/)c0 3915    X. cxp 5112   dom cdm 5114  (class class class)co 6650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-dm 5124  df-iota 5851  df-fv 5896  df-ov 6653
This theorem is referenced by:  addcompi  9716  mulcompi  9718  addcompq  9772  addcomnq  9773  mulcompq  9774  mulcomnq  9775  addcompr  9843  mulcompr  9845  addcomsr  9908  mulcomsr  9910  addcomgi  38660
  Copyright terms: Public domain W3C validator