MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem11 Structured version   Visualization version   Unicode version

Theorem 2sqlem11 25154
Description: Lemma for 2sq 25155. (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypotheses
Ref Expression
2sq.1  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
2sqlem7.2  |-  Y  =  { z  |  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) }
Assertion
Ref Expression
2sqlem11  |-  ( ( P  e.  Prime  /\  ( P  mod  4 )  =  1 )  ->  P  e.  S )
Distinct variable groups:    x, w, y, z    x, S, y, z    x, Y, y   
x, P, y
Allowed substitution hints:    P( z, w)    S( w)    Y( z, w)

Proof of Theorem 2sqlem11
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . . 5  |-  ( ( P  e.  Prime  /\  ( P  mod  4 )  =  1 )  ->  ( P  mod  4 )  =  1 )
2 simpl 473 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( P  mod  4 )  =  1 )  ->  P  e.  Prime )
3 1ne2 11240 . . . . . . . . . . 11  |-  1  =/=  2
43necomi 2848 . . . . . . . . . 10  |-  2  =/=  1
5 oveq1 6657 . . . . . . . . . . . 12  |-  ( P  =  2  ->  ( P  mod  4 )  =  ( 2  mod  4
) )
6 2re 11090 . . . . . . . . . . . . 13  |-  2  e.  RR
7 4re 11097 . . . . . . . . . . . . . 14  |-  4  e.  RR
8 4pos 11116 . . . . . . . . . . . . . 14  |-  0  <  4
97, 8elrpii 11835 . . . . . . . . . . . . 13  |-  4  e.  RR+
10 0le2 11111 . . . . . . . . . . . . 13  |-  0  <_  2
11 2lt4 11198 . . . . . . . . . . . . 13  |-  2  <  4
12 modid 12695 . . . . . . . . . . . . 13  |-  ( ( ( 2  e.  RR  /\  4  e.  RR+ )  /\  ( 0  <_  2  /\  2  <  4
) )  ->  (
2  mod  4 )  =  2 )
136, 9, 10, 11, 12mp4an 709 . . . . . . . . . . . 12  |-  ( 2  mod  4 )  =  2
145, 13syl6eq 2672 . . . . . . . . . . 11  |-  ( P  =  2  ->  ( P  mod  4 )  =  2 )
1514neeq1d 2853 . . . . . . . . . 10  |-  ( P  =  2  ->  (
( P  mod  4
)  =/=  1  <->  2  =/=  1 ) )
164, 15mpbiri 248 . . . . . . . . 9  |-  ( P  =  2  ->  ( P  mod  4 )  =/=  1 )
1716necon2i 2828 . . . . . . . 8  |-  ( ( P  mod  4 )  =  1  ->  P  =/=  2 )
181, 17syl 17 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( P  mod  4 )  =  1 )  ->  P  =/=  2 )
19 eldifsn 4317 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  <->  ( P  e.  Prime  /\  P  =/=  2 ) )
202, 18, 19sylanbrc 698 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( P  mod  4 )  =  1 )  ->  P  e.  ( Prime  \  { 2 } ) )
21 m1lgs 25113 . . . . . 6  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( -u 1  /L P )  =  1  <->  ( P  mod  4 )  =  1 ) )
2220, 21syl 17 . . . . 5  |-  ( ( P  e.  Prime  /\  ( P  mod  4 )  =  1 )  ->  (
( -u 1  /L
P )  =  1  <-> 
( P  mod  4
)  =  1 ) )
231, 22mpbird 247 . . . 4  |-  ( ( P  e.  Prime  /\  ( P  mod  4 )  =  1 )  ->  ( -u 1  /L P )  =  1 )
24 neg1z 11413 . . . . 5  |-  -u 1  e.  ZZ
25 lgsqr 25076 . . . . 5  |-  ( (
-u 1  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( -u 1  /L P )  =  1  <->  ( -.  P  ||  -u 1  /\  E. n  e.  ZZ  P  ||  ( ( n ^ 2 )  -  -u 1 ) ) ) )
2624, 20, 25sylancr 695 . . . 4  |-  ( ( P  e.  Prime  /\  ( P  mod  4 )  =  1 )  ->  (
( -u 1  /L
P )  =  1  <-> 
( -.  P  ||  -u 1  /\  E. n  e.  ZZ  P  ||  (
( n ^ 2 )  -  -u 1
) ) ) )
2723, 26mpbid 222 . . 3  |-  ( ( P  e.  Prime  /\  ( P  mod  4 )  =  1 )  ->  ( -.  P  ||  -u 1  /\  E. n  e.  ZZ  P  ||  ( ( n ^ 2 )  -  -u 1 ) ) )
2827simprd 479 . 2  |-  ( ( P  e.  Prime  /\  ( P  mod  4 )  =  1 )  ->  E. n  e.  ZZ  P  ||  (
( n ^ 2 )  -  -u 1
) )
29 simprl 794 . . . . 5  |-  ( ( ( P  e.  Prime  /\  ( P  mod  4
)  =  1 )  /\  ( n  e.  ZZ  /\  P  ||  ( ( n ^
2 )  -  -u 1
) ) )  ->  n  e.  ZZ )
30 1zzd 11408 . . . . 5  |-  ( ( ( P  e.  Prime  /\  ( P  mod  4
)  =  1 )  /\  ( n  e.  ZZ  /\  P  ||  ( ( n ^
2 )  -  -u 1
) ) )  -> 
1  e.  ZZ )
31 gcd1 15249 . . . . . 6  |-  ( n  e.  ZZ  ->  (
n  gcd  1 )  =  1 )
3231ad2antrl 764 . . . . 5  |-  ( ( ( P  e.  Prime  /\  ( P  mod  4
)  =  1 )  /\  ( n  e.  ZZ  /\  P  ||  ( ( n ^
2 )  -  -u 1
) ) )  -> 
( n  gcd  1
)  =  1 )
33 eqidd 2623 . . . . 5  |-  ( ( ( P  e.  Prime  /\  ( P  mod  4
)  =  1 )  /\  ( n  e.  ZZ  /\  P  ||  ( ( n ^
2 )  -  -u 1
) ) )  -> 
( ( n ^
2 )  +  1 )  =  ( ( n ^ 2 )  +  1 ) )
34 oveq1 6657 . . . . . . . 8  |-  ( x  =  n  ->  (
x  gcd  y )  =  ( n  gcd  y ) )
3534eqeq1d 2624 . . . . . . 7  |-  ( x  =  n  ->  (
( x  gcd  y
)  =  1  <->  (
n  gcd  y )  =  1 ) )
36 oveq1 6657 . . . . . . . . 9  |-  ( x  =  n  ->  (
x ^ 2 )  =  ( n ^
2 ) )
3736oveq1d 6665 . . . . . . . 8  |-  ( x  =  n  ->  (
( x ^ 2 )  +  ( y ^ 2 ) )  =  ( ( n ^ 2 )  +  ( y ^ 2 ) ) )
3837eqeq2d 2632 . . . . . . 7  |-  ( x  =  n  ->  (
( ( n ^
2 )  +  1 )  =  ( ( x ^ 2 )  +  ( y ^
2 ) )  <->  ( (
n ^ 2 )  +  1 )  =  ( ( n ^
2 )  +  ( y ^ 2 ) ) ) )
3935, 38anbi12d 747 . . . . . 6  |-  ( x  =  n  ->  (
( ( x  gcd  y )  =  1  /\  ( ( n ^ 2 )  +  1 )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )  <->  ( ( n  gcd  y )  =  1  /\  ( ( n ^ 2 )  +  1 )  =  ( ( n ^
2 )  +  ( y ^ 2 ) ) ) ) )
40 oveq2 6658 . . . . . . . 8  |-  ( y  =  1  ->  (
n  gcd  y )  =  ( n  gcd  1 ) )
4140eqeq1d 2624 . . . . . . 7  |-  ( y  =  1  ->  (
( n  gcd  y
)  =  1  <->  (
n  gcd  1 )  =  1 ) )
42 oveq1 6657 . . . . . . . . . 10  |-  ( y  =  1  ->  (
y ^ 2 )  =  ( 1 ^ 2 ) )
43 sq1 12958 . . . . . . . . . 10  |-  ( 1 ^ 2 )  =  1
4442, 43syl6eq 2672 . . . . . . . . 9  |-  ( y  =  1  ->  (
y ^ 2 )  =  1 )
4544oveq2d 6666 . . . . . . . 8  |-  ( y  =  1  ->  (
( n ^ 2 )  +  ( y ^ 2 ) )  =  ( ( n ^ 2 )  +  1 ) )
4645eqeq2d 2632 . . . . . . 7  |-  ( y  =  1  ->  (
( ( n ^
2 )  +  1 )  =  ( ( n ^ 2 )  +  ( y ^
2 ) )  <->  ( (
n ^ 2 )  +  1 )  =  ( ( n ^
2 )  +  1 ) ) )
4741, 46anbi12d 747 . . . . . 6  |-  ( y  =  1  ->  (
( ( n  gcd  y )  =  1  /\  ( ( n ^ 2 )  +  1 )  =  ( ( n ^ 2 )  +  ( y ^ 2 ) ) )  <->  ( ( n  gcd  1 )  =  1  /\  ( ( n ^ 2 )  +  1 )  =  ( ( n ^
2 )  +  1 ) ) ) )
4839, 47rspc2ev 3324 . . . . 5  |-  ( ( n  e.  ZZ  /\  1  e.  ZZ  /\  (
( n  gcd  1
)  =  1  /\  ( ( n ^
2 )  +  1 )  =  ( ( n ^ 2 )  +  1 ) ) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  ( ( n ^ 2 )  +  1 )  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )
4929, 30, 32, 33, 48syl112anc 1330 . . . 4  |-  ( ( ( P  e.  Prime  /\  ( P  mod  4
)  =  1 )  /\  ( n  e.  ZZ  /\  P  ||  ( ( n ^
2 )  -  -u 1
) ) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  ( ( n ^
2 )  +  1 )  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) ) )
50 ovex 6678 . . . . 5  |-  ( ( n ^ 2 )  +  1 )  e. 
_V
51 eqeq1 2626 . . . . . . 7  |-  ( z  =  ( ( n ^ 2 )  +  1 )  ->  (
z  =  ( ( x ^ 2 )  +  ( y ^
2 ) )  <->  ( (
n ^ 2 )  +  1 )  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )
5251anbi2d 740 . . . . . 6  |-  ( z  =  ( ( n ^ 2 )  +  1 )  ->  (
( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )  <->  ( ( x  gcd  y )  =  1  /\  ( ( n ^ 2 )  +  1 )  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) ) )
53522rexbidv 3057 . . . . 5  |-  ( z  =  ( ( n ^ 2 )  +  1 )  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )  <->  E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  ( ( n ^
2 )  +  1 )  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) ) ) )
54 2sqlem7.2 . . . . 5  |-  Y  =  { z  |  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) }
5550, 53, 54elab2 3354 . . . 4  |-  ( ( ( n ^ 2 )  +  1 )  e.  Y  <->  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  ( ( n ^ 2 )  +  1 )  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )
5649, 55sylibr 224 . . 3  |-  ( ( ( P  e.  Prime  /\  ( P  mod  4
)  =  1 )  /\  ( n  e.  ZZ  /\  P  ||  ( ( n ^
2 )  -  -u 1
) ) )  -> 
( ( n ^
2 )  +  1 )  e.  Y )
57 prmnn 15388 . . . 4  |-  ( P  e.  Prime  ->  P  e.  NN )
5857ad2antrr 762 . . 3  |-  ( ( ( P  e.  Prime  /\  ( P  mod  4
)  =  1 )  /\  ( n  e.  ZZ  /\  P  ||  ( ( n ^
2 )  -  -u 1
) ) )  ->  P  e.  NN )
59 simprr 796 . . . 4  |-  ( ( ( P  e.  Prime  /\  ( P  mod  4
)  =  1 )  /\  ( n  e.  ZZ  /\  P  ||  ( ( n ^
2 )  -  -u 1
) ) )  ->  P  ||  ( ( n ^ 2 )  -  -u 1 ) )
6029zcnd 11483 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  ( P  mod  4
)  =  1 )  /\  ( n  e.  ZZ  /\  P  ||  ( ( n ^
2 )  -  -u 1
) ) )  ->  n  e.  CC )
6160sqcld 13006 . . . . 5  |-  ( ( ( P  e.  Prime  /\  ( P  mod  4
)  =  1 )  /\  ( n  e.  ZZ  /\  P  ||  ( ( n ^
2 )  -  -u 1
) ) )  -> 
( n ^ 2 )  e.  CC )
62 ax-1cn 9994 . . . . 5  |-  1  e.  CC
63 subneg 10330 . . . . 5  |-  ( ( ( n ^ 2 )  e.  CC  /\  1  e.  CC )  ->  ( ( n ^
2 )  -  -u 1
)  =  ( ( n ^ 2 )  +  1 ) )
6461, 62, 63sylancl 694 . . . 4  |-  ( ( ( P  e.  Prime  /\  ( P  mod  4
)  =  1 )  /\  ( n  e.  ZZ  /\  P  ||  ( ( n ^
2 )  -  -u 1
) ) )  -> 
( ( n ^
2 )  -  -u 1
)  =  ( ( n ^ 2 )  +  1 ) )
6559, 64breqtrd 4679 . . 3  |-  ( ( ( P  e.  Prime  /\  ( P  mod  4
)  =  1 )  /\  ( n  e.  ZZ  /\  P  ||  ( ( n ^
2 )  -  -u 1
) ) )  ->  P  ||  ( ( n ^ 2 )  +  1 ) )
66 2sq.1 . . . 4  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
6766, 542sqlem10 25153 . . 3  |-  ( ( ( ( n ^
2 )  +  1 )  e.  Y  /\  P  e.  NN  /\  P  ||  ( ( n ^
2 )  +  1 ) )  ->  P  e.  S )
6856, 58, 65, 67syl3anc 1326 . 2  |-  ( ( ( P  e.  Prime  /\  ( P  mod  4
)  =  1 )  /\  ( n  e.  ZZ  /\  P  ||  ( ( n ^
2 )  -  -u 1
) ) )  ->  P  e.  S )
6928, 68rexlimddv 3035 1  |-  ( ( P  e.  Prime  /\  ( P  mod  4 )  =  1 )  ->  P  e.  S )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608    =/= wne 2794   E.wrex 2913    \ cdif 3571   {csn 4177   class class class wbr 4653    |-> cmpt 4729   ran crn 5115   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266   -ucneg 10267   NNcn 11020   2c2 11070   4c4 11072   ZZcz 11377   RR+crp 11832    mod cmo 12668   ^cexp 12860   abscabs 13974    || cdvds 14983    gcd cgcd 15216   Primecprime 15385   ZZ[_i]cgz 15633    /Lclgs 25019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-phi 15471  df-pc 15542  df-gz 15634  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-imas 16168  df-qus 16169  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-nsg 17592  df-eqg 17593  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-srg 18506  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-rnghom 18715  df-drng 18749  df-field 18750  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-sra 19172  df-rgmod 19173  df-lidl 19174  df-rsp 19175  df-2idl 19232  df-nzr 19258  df-rlreg 19283  df-domn 19284  df-idom 19285  df-assa 19312  df-asp 19313  df-ascl 19314  df-psr 19356  df-mvr 19357  df-mpl 19358  df-opsr 19360  df-evls 19506  df-evl 19507  df-psr1 19550  df-vr1 19551  df-ply1 19552  df-coe1 19553  df-evl1 19681  df-cnfld 19747  df-zring 19819  df-zrh 19852  df-zn 19855  df-mdeg 23815  df-deg1 23816  df-mon1 23890  df-uc1p 23891  df-q1p 23892  df-r1p 23893  df-lgs 25020
This theorem is referenced by:  2sq  25155
  Copyright terms: Public domain W3C validator