Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovoliunnfl Structured version   Visualization version   Unicode version

Theorem ovoliunnfl 33451
Description: ovoliun 23273 is incompatible with the Feferman-Levy model. (Contributed by Brendan Leahy, 21-Nov-2017.)
Hypothesis
Ref Expression
ovoliunnfl.0  |-  ( ( f  Fn  NN  /\  A. n  e.  NN  (
( f `  n
)  C_  RR  /\  ( vol* `  ( f `
 n ) )  e.  RR ) )  ->  ( vol* `  U_ m  e.  NN  ( f `  m
) )  <_  sup ( ran  seq 1 (  +  ,  ( m  e.  NN  |->  ( vol* `  ( f `  m ) ) ) ) ,  RR* ,  <  ) )
Assertion
Ref Expression
ovoliunnfl  |-  ( ( A  ~<_  NN  /\  A. x  e.  A  x  ~<_  NN )  ->  U. A  =/=  RR )
Distinct variable group:    f, n, m, x, A

Proof of Theorem ovoliunnfl
Dummy variable  l is distinct from all other variables.
StepHypRef Expression
1 unieq 4444 . . . . . . . . 9  |-  ( A  =  (/)  ->  U. A  =  U. (/) )
2 uni0 4465 . . . . . . . . 9  |-  U. (/)  =  (/)
31, 2syl6eq 2672 . . . . . . . 8  |-  ( A  =  (/)  ->  U. A  =  (/) )
43fveq2d 6195 . . . . . . 7  |-  ( A  =  (/)  ->  ( vol* `  U. A )  =  ( vol* `  (/) ) )
5 ovol0 23261 . . . . . . 7  |-  ( vol* `  (/) )  =  0
64, 5syl6req 2673 . . . . . 6  |-  ( A  =  (/)  ->  0  =  ( vol* `  U. A ) )
76a1d 25 . . . . 5  |-  ( A  =  (/)  ->  ( ( A  ~<_  NN  /\  ( A. x  e.  A  x  ~<_  NN  /\  U. A  C_  RR ) )  -> 
0  =  ( vol* `  U. A ) ) )
8 ovolge0 23249 . . . . . . . 8  |-  ( U. A  C_  RR  ->  0  <_  ( vol* `  U. A ) )
98ad2antll 765 . . . . . . 7  |-  ( ( ( A  =/=  (/)  /\  A  ~<_  NN )  /\  ( A. x  e.  A  x  ~<_  NN  /\  U. A  C_  RR ) )  -> 
0  <_  ( vol* `  U. A ) )
10 reldom 7961 . . . . . . . . . . . 12  |-  Rel  ~<_
1110brrelexi 5158 . . . . . . . . . . 11  |-  ( A  ~<_  NN  ->  A  e.  _V )
12 0sdomg 8089 . . . . . . . . . . 11  |-  ( A  e.  _V  ->  ( (/) 
~<  A  <->  A  =/=  (/) ) )
1311, 12syl 17 . . . . . . . . . 10  |-  ( A  ~<_  NN  ->  ( (/)  ~<  A  <->  A  =/=  (/) ) )
1413biimparc 504 . . . . . . . . 9  |-  ( ( A  =/=  (/)  /\  A  ~<_  NN )  ->  (/)  ~<  A )
15 fodomr 8111 . . . . . . . . 9  |-  ( (
(/)  ~<  A  /\  A  ~<_  NN )  ->  E. f 
f : NN -onto-> A
)
1614, 15sylancom 701 . . . . . . . 8  |-  ( ( A  =/=  (/)  /\  A  ~<_  NN )  ->  E. f 
f : NN -onto-> A
)
17 unissb 4469 . . . . . . . . . . . 12  |-  ( U. A  C_  RR  <->  A. x  e.  A  x  C_  RR )
1817anbi1i 731 . . . . . . . . . . 11  |-  ( ( U. A  C_  RR  /\ 
A. x  e.  A  x  ~<_  NN )  <->  ( A. x  e.  A  x  C_  RR  /\  A. x  e.  A  x  ~<_  NN ) )
19 r19.26 3064 . . . . . . . . . . 11  |-  ( A. x  e.  A  (
x  C_  RR  /\  x  ~<_  NN )  <->  ( A. x  e.  A  x  C_  RR  /\ 
A. x  e.  A  x  ~<_  NN ) )
2018, 19bitr4i 267 . . . . . . . . . 10  |-  ( ( U. A  C_  RR  /\ 
A. x  e.  A  x  ~<_  NN )  <->  A. x  e.  A  ( x  C_  RR  /\  x  ~<_  NN ) )
21 brdom2 7985 . . . . . . . . . . . . . 14  |-  ( x  ~<_  NN  <->  ( x  ~<  NN  \/  x  ~~  NN ) )
22 nnenom 12779 . . . . . . . . . . . . . . . . 17  |-  NN  ~~  om
23 sdomen2 8105 . . . . . . . . . . . . . . . . 17  |-  ( NN 
~~  om  ->  ( x 
~<  NN  <->  x  ~<  om )
)
2422, 23ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( x 
~<  NN  <->  x  ~<  om )
25 isfinite 8549 . . . . . . . . . . . . . . . 16  |-  ( x  e.  Fin  <->  x  ~<  om )
2624, 25bitr4i 267 . . . . . . . . . . . . . . 15  |-  ( x 
~<  NN  <->  x  e.  Fin )
2726orbi1i 542 . . . . . . . . . . . . . 14  |-  ( ( x  ~<  NN  \/  x  ~~  NN )  <->  ( x  e.  Fin  \/  x  ~~  NN ) )
2821, 27bitri 264 . . . . . . . . . . . . 13  |-  ( x  ~<_  NN  <->  ( x  e. 
Fin  \/  x  ~~  NN ) )
29 ovolfi 23262 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  Fin  /\  x  C_  RR )  -> 
( vol* `  x )  =  0 )
3029expcom 451 . . . . . . . . . . . . . 14  |-  ( x 
C_  RR  ->  ( x  e.  Fin  ->  ( vol* `  x )  =  0 ) )
31 ovolctb 23258 . . . . . . . . . . . . . . 15  |-  ( ( x  C_  RR  /\  x  ~~  NN )  ->  ( vol* `  x )  =  0 )
3231ex 450 . . . . . . . . . . . . . 14  |-  ( x 
C_  RR  ->  ( x 
~~  NN  ->  ( vol* `  x )  =  0 ) )
3330, 32jaod 395 . . . . . . . . . . . . 13  |-  ( x 
C_  RR  ->  ( ( x  e.  Fin  \/  x  ~~  NN )  -> 
( vol* `  x )  =  0 ) )
3428, 33syl5bi 232 . . . . . . . . . . . 12  |-  ( x 
C_  RR  ->  ( x  ~<_  NN  ->  ( vol* `  x )  =  0 ) )
3534imdistani 726 . . . . . . . . . . 11  |-  ( ( x  C_  RR  /\  x  ~<_  NN )  ->  ( x 
C_  RR  /\  ( vol* `  x )  =  0 ) )
3635ralimi 2952 . . . . . . . . . 10  |-  ( A. x  e.  A  (
x  C_  RR  /\  x  ~<_  NN )  ->  A. x  e.  A  ( x  C_  RR  /\  ( vol* `  x )  =  0 ) )
3720, 36sylbi 207 . . . . . . . . 9  |-  ( ( U. A  C_  RR  /\ 
A. x  e.  A  x  ~<_  NN )  ->  A. x  e.  A  ( x  C_  RR  /\  ( vol* `  x
)  =  0 ) )
3837ancoms 469 . . . . . . . 8  |-  ( ( A. x  e.  A  x  ~<_  NN  /\  U. A  C_  RR )  ->  A. x  e.  A  ( x  C_  RR  /\  ( vol* `  x )  =  0 ) )
39 foima 6120 . . . . . . . . . . . . 13  |-  ( f : NN -onto-> A  -> 
( f " NN )  =  A )
4039raleqdv 3144 . . . . . . . . . . . 12  |-  ( f : NN -onto-> A  -> 
( A. x  e.  ( f " NN ) ( x  C_  RR  /\  ( vol* `  x )  =  0 )  <->  A. x  e.  A  ( x  C_  RR  /\  ( vol* `  x
)  =  0 ) ) )
41 fofn 6117 . . . . . . . . . . . . 13  |-  ( f : NN -onto-> A  -> 
f  Fn  NN )
42 ssid 3624 . . . . . . . . . . . . 13  |-  NN  C_  NN
43 sseq1 3626 . . . . . . . . . . . . . . 15  |-  ( x  =  ( f `  l )  ->  (
x  C_  RR  <->  ( f `  l )  C_  RR ) )
44 fveq2 6191 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( f `  l )  ->  ( vol* `  x )  =  ( vol* `  ( f `  l
) ) )
4544eqeq1d 2624 . . . . . . . . . . . . . . 15  |-  ( x  =  ( f `  l )  ->  (
( vol* `  x )  =  0  <-> 
( vol* `  ( f `  l
) )  =  0 ) )
4643, 45anbi12d 747 . . . . . . . . . . . . . 14  |-  ( x  =  ( f `  l )  ->  (
( x  C_  RR  /\  ( vol* `  x )  =  0 )  <->  ( ( f `
 l )  C_  RR  /\  ( vol* `  ( f `  l
) )  =  0 ) ) )
4746ralima 6498 . . . . . . . . . . . . 13  |-  ( ( f  Fn  NN  /\  NN  C_  NN )  -> 
( A. x  e.  ( f " NN ) ( x  C_  RR  /\  ( vol* `  x )  =  0 )  <->  A. l  e.  NN  ( ( f `  l )  C_  RR  /\  ( vol* `  ( f `  l
) )  =  0 ) ) )
4841, 42, 47sylancl 694 . . . . . . . . . . . 12  |-  ( f : NN -onto-> A  -> 
( A. x  e.  ( f " NN ) ( x  C_  RR  /\  ( vol* `  x )  =  0 )  <->  A. l  e.  NN  ( ( f `  l )  C_  RR  /\  ( vol* `  ( f `  l
) )  =  0 ) ) )
4940, 48bitr3d 270 . . . . . . . . . . 11  |-  ( f : NN -onto-> A  -> 
( A. x  e.  A  ( x  C_  RR  /\  ( vol* `  x )  =  0 )  <->  A. l  e.  NN  ( ( f `  l )  C_  RR  /\  ( vol* `  ( f `  l
) )  =  0 ) ) )
50 fveq2 6191 . . . . . . . . . . . . . . . . . 18  |-  ( l  =  n  ->  (
f `  l )  =  ( f `  n ) )
5150sseq1d 3632 . . . . . . . . . . . . . . . . 17  |-  ( l  =  n  ->  (
( f `  l
)  C_  RR  <->  ( f `  n )  C_  RR ) )
5250fveq2d 6195 . . . . . . . . . . . . . . . . . 18  |-  ( l  =  n  ->  ( vol* `  ( f `
 l ) )  =  ( vol* `  ( f `  n
) ) )
5352eqeq1d 2624 . . . . . . . . . . . . . . . . 17  |-  ( l  =  n  ->  (
( vol* `  ( f `  l
) )  =  0  <-> 
( vol* `  ( f `  n
) )  =  0 ) )
5451, 53anbi12d 747 . . . . . . . . . . . . . . . 16  |-  ( l  =  n  ->  (
( ( f `  l )  C_  RR  /\  ( vol* `  ( f `  l
) )  =  0 )  <->  ( ( f `
 n )  C_  RR  /\  ( vol* `  ( f `  n
) )  =  0 ) ) )
5554cbvralv 3171 . . . . . . . . . . . . . . 15  |-  ( A. l  e.  NN  (
( f `  l
)  C_  RR  /\  ( vol* `  ( f `
 l ) )  =  0 )  <->  A. n  e.  NN  ( ( f `
 n )  C_  RR  /\  ( vol* `  ( f `  n
) )  =  0 ) )
56 0re 10040 . . . . . . . . . . . . . . . . . 18  |-  0  e.  RR
57 eleq1a 2696 . . . . . . . . . . . . . . . . . 18  |-  ( 0  e.  RR  ->  (
( vol* `  ( f `  n
) )  =  0  ->  ( vol* `  ( f `  n
) )  e.  RR ) )
5856, 57ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( ( vol* `  (
f `  n )
)  =  0  -> 
( vol* `  ( f `  n
) )  e.  RR )
5958anim2i 593 . . . . . . . . . . . . . . . 16  |-  ( ( ( f `  n
)  C_  RR  /\  ( vol* `  ( f `
 n ) )  =  0 )  -> 
( ( f `  n )  C_  RR  /\  ( vol* `  ( f `  n
) )  e.  RR ) )
6059ralimi 2952 . . . . . . . . . . . . . . 15  |-  ( A. n  e.  NN  (
( f `  n
)  C_  RR  /\  ( vol* `  ( f `
 n ) )  =  0 )  ->  A. n  e.  NN  ( ( f `  n )  C_  RR  /\  ( vol* `  ( f `  n
) )  e.  RR ) )
6155, 60sylbi 207 . . . . . . . . . . . . . 14  |-  ( A. l  e.  NN  (
( f `  l
)  C_  RR  /\  ( vol* `  ( f `
 l ) )  =  0 )  ->  A. n  e.  NN  ( ( f `  n )  C_  RR  /\  ( vol* `  ( f `  n
) )  e.  RR ) )
62 ovoliunnfl.0 . . . . . . . . . . . . . 14  |-  ( ( f  Fn  NN  /\  A. n  e.  NN  (
( f `  n
)  C_  RR  /\  ( vol* `  ( f `
 n ) )  e.  RR ) )  ->  ( vol* `  U_ m  e.  NN  ( f `  m
) )  <_  sup ( ran  seq 1 (  +  ,  ( m  e.  NN  |->  ( vol* `  ( f `  m ) ) ) ) ,  RR* ,  <  ) )
6341, 61, 62syl2an 494 . . . . . . . . . . . . 13  |-  ( ( f : NN -onto-> A  /\  A. l  e.  NN  ( ( f `  l )  C_  RR  /\  ( vol* `  ( f `  l
) )  =  0 ) )  ->  ( vol* `  U_ m  e.  NN  ( f `  m ) )  <_  sup ( ran  seq 1
(  +  ,  ( m  e.  NN  |->  ( vol* `  (
f `  m )
) ) ) , 
RR* ,  <  ) )
64 fofun 6116 . . . . . . . . . . . . . . . . 17  |-  ( f : NN -onto-> A  ->  Fun  f )
65 funiunfv 6506 . . . . . . . . . . . . . . . . 17  |-  ( Fun  f  ->  U_ m  e.  NN  ( f `  m )  =  U. ( f " NN ) )
6664, 65syl 17 . . . . . . . . . . . . . . . 16  |-  ( f : NN -onto-> A  ->  U_ m  e.  NN  ( f `  m
)  =  U. (
f " NN ) )
6739unieqd 4446 . . . . . . . . . . . . . . . 16  |-  ( f : NN -onto-> A  ->  U. ( f " NN )  =  U. A )
6866, 67eqtrd 2656 . . . . . . . . . . . . . . 15  |-  ( f : NN -onto-> A  ->  U_ m  e.  NN  ( f `  m
)  =  U. A
)
6968fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( f : NN -onto-> A  -> 
( vol* `  U_ m  e.  NN  (
f `  m )
)  =  ( vol* `  U. A ) )
7069adantr 481 . . . . . . . . . . . . 13  |-  ( ( f : NN -onto-> A  /\  A. l  e.  NN  ( ( f `  l )  C_  RR  /\  ( vol* `  ( f `  l
) )  =  0 ) )  ->  ( vol* `  U_ m  e.  NN  ( f `  m ) )  =  ( vol* `  U. A ) )
71 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( l  =  m  ->  (
f `  l )  =  ( f `  m ) )
7271sseq1d 3632 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( l  =  m  ->  (
( f `  l
)  C_  RR  <->  ( f `  m )  C_  RR ) )
7371fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( l  =  m  ->  ( vol* `  ( f `
 l ) )  =  ( vol* `  ( f `  m
) ) )
7473eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( l  =  m  ->  (
( vol* `  ( f `  l
) )  =  0  <-> 
( vol* `  ( f `  m
) )  =  0 ) )
7572, 74anbi12d 747 . . . . . . . . . . . . . . . . . . . . 21  |-  ( l  =  m  ->  (
( ( f `  l )  C_  RR  /\  ( vol* `  ( f `  l
) )  =  0 )  <->  ( ( f `
 m )  C_  RR  /\  ( vol* `  ( f `  m
) )  =  0 ) ) )
7675rspccva 3308 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A. l  e.  NN  ( ( f `  l )  C_  RR  /\  ( vol* `  ( f `  l
) )  =  0 )  /\  m  e.  NN )  ->  (
( f `  m
)  C_  RR  /\  ( vol* `  ( f `
 m ) )  =  0 ) )
7776simprd 479 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A. l  e.  NN  ( ( f `  l )  C_  RR  /\  ( vol* `  ( f `  l
) )  =  0 )  /\  m  e.  NN )  ->  ( vol* `  ( f `
 m ) )  =  0 )
7877mpteq2dva 4744 . . . . . . . . . . . . . . . . . 18  |-  ( A. l  e.  NN  (
( f `  l
)  C_  RR  /\  ( vol* `  ( f `
 l ) )  =  0 )  -> 
( m  e.  NN  |->  ( vol* `  (
f `  m )
) )  =  ( m  e.  NN  |->  0 ) )
7978seqeq3d 12809 . . . . . . . . . . . . . . . . 17  |-  ( A. l  e.  NN  (
( f `  l
)  C_  RR  /\  ( vol* `  ( f `
 l ) )  =  0 )  ->  seq 1 (  +  , 
( m  e.  NN  |->  ( vol* `  (
f `  m )
) ) )  =  seq 1 (  +  ,  ( m  e.  NN  |->  0 ) ) )
8079rneqd 5353 . . . . . . . . . . . . . . . 16  |-  ( A. l  e.  NN  (
( f `  l
)  C_  RR  /\  ( vol* `  ( f `
 l ) )  =  0 )  ->  ran  seq 1 (  +  ,  ( m  e.  NN  |->  ( vol* `  ( f `  m
) ) ) )  =  ran  seq 1
(  +  ,  ( m  e.  NN  |->  0 ) ) )
8180supeq1d 8352 . . . . . . . . . . . . . . 15  |-  ( A. l  e.  NN  (
( f `  l
)  C_  RR  /\  ( vol* `  ( f `
 l ) )  =  0 )  ->  sup ( ran  seq 1
(  +  ,  ( m  e.  NN  |->  ( vol* `  (
f `  m )
) ) ) , 
RR* ,  <  )  =  sup ( ran  seq 1 (  +  , 
( m  e.  NN  |->  0 ) ) , 
RR* ,  <  ) )
82 0cn 10032 . . . . . . . . . . . . . . . . . . . . . . 23  |-  0  e.  CC
83 ser1const 12857 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 0  e.  CC  /\  l  e.  NN )  ->  (  seq 1 (  +  ,  ( NN 
X.  { 0 } ) ) `  l
)  =  ( l  x.  0 ) )
8482, 83mpan 706 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( l  e.  NN  ->  (  seq 1 (  +  , 
( NN  X.  {
0 } ) ) `
 l )  =  ( l  x.  0 ) )
85 nncn 11028 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( l  e.  NN  ->  l  e.  CC )
8685mul01d 10235 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( l  e.  NN  ->  (
l  x.  0 )  =  0 )
8784, 86eqtrd 2656 . . . . . . . . . . . . . . . . . . . . 21  |-  ( l  e.  NN  ->  (  seq 1 (  +  , 
( NN  X.  {
0 } ) ) `
 l )  =  0 )
8887mpteq2ia 4740 . . . . . . . . . . . . . . . . . . . 20  |-  ( l  e.  NN  |->  (  seq 1 (  +  , 
( NN  X.  {
0 } ) ) `
 l ) )  =  ( l  e.  NN  |->  0 )
89 fconstmpt 5163 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( NN 
X.  { 0 } )  =  ( m  e.  NN  |->  0 )
90 seqeq3 12806 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( NN  X.  { 0 } )  =  ( m  e.  NN  |->  0 )  ->  seq 1
(  +  ,  ( NN  X.  { 0 } ) )  =  seq 1 (  +  ,  ( m  e.  NN  |->  0 ) ) )
9189, 90ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21  |-  seq 1
(  +  ,  ( NN  X.  { 0 } ) )  =  seq 1 (  +  ,  ( m  e.  NN  |->  0 ) )
92 1z 11407 . . . . . . . . . . . . . . . . . . . . . . 23  |-  1  e.  ZZ
93 seqfn 12813 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( 1  e.  ZZ  ->  seq 1 (  +  , 
( NN  X.  {
0 } ) )  Fn  ( ZZ>= `  1
) )
9492, 93ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22  |-  seq 1
(  +  ,  ( NN  X.  { 0 } ) )  Fn  ( ZZ>= `  1 )
95 nnuz 11723 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  NN  =  ( ZZ>= `  1 )
9695fneq2i 5986 . . . . . . . . . . . . . . . . . . . . . . 23  |-  (  seq 1 (  +  , 
( NN  X.  {
0 } ) )  Fn  NN  <->  seq 1
(  +  ,  ( NN  X.  { 0 } ) )  Fn  ( ZZ>= `  1 )
)
97 dffn5 6241 . . . . . . . . . . . . . . . . . . . . . . 23  |-  (  seq 1 (  +  , 
( NN  X.  {
0 } ) )  Fn  NN  <->  seq 1
(  +  ,  ( NN  X.  { 0 } ) )  =  ( l  e.  NN  |->  (  seq 1 (  +  ,  ( NN  X.  { 0 } ) ) `  l ) ) )
9896, 97bitr3i 266 . . . . . . . . . . . . . . . . . . . . . 22  |-  (  seq 1 (  +  , 
( NN  X.  {
0 } ) )  Fn  ( ZZ>= `  1
)  <->  seq 1 (  +  ,  ( NN  X.  { 0 } ) )  =  ( l  e.  NN  |->  (  seq 1 (  +  , 
( NN  X.  {
0 } ) ) `
 l ) ) )
9994, 98mpbi 220 . . . . . . . . . . . . . . . . . . . . 21  |-  seq 1
(  +  ,  ( NN  X.  { 0 } ) )  =  ( l  e.  NN  |->  (  seq 1 (  +  ,  ( NN  X.  { 0 } ) ) `  l ) )
10091, 99eqtr3i 2646 . . . . . . . . . . . . . . . . . . . 20  |-  seq 1
(  +  ,  ( m  e.  NN  |->  0 ) )  =  ( l  e.  NN  |->  (  seq 1 (  +  ,  ( NN  X.  { 0 } ) ) `  l ) )
101 fconstmpt 5163 . . . . . . . . . . . . . . . . . . . 20  |-  ( NN 
X.  { 0 } )  =  ( l  e.  NN  |->  0 )
10288, 100, 1013eqtr4i 2654 . . . . . . . . . . . . . . . . . . 19  |-  seq 1
(  +  ,  ( m  e.  NN  |->  0 ) )  =  ( NN  X.  { 0 } )
103102rneqi 5352 . . . . . . . . . . . . . . . . . 18  |-  ran  seq 1 (  +  , 
( m  e.  NN  |->  0 ) )  =  ran  ( NN  X.  { 0 } )
104 1nn 11031 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  NN
105 ne0i 3921 . . . . . . . . . . . . . . . . . . 19  |-  ( 1  e.  NN  ->  NN  =/=  (/) )
106 rnxp 5564 . . . . . . . . . . . . . . . . . . 19  |-  ( NN  =/=  (/)  ->  ran  ( NN 
X.  { 0 } )  =  { 0 } )
107104, 105, 106mp2b 10 . . . . . . . . . . . . . . . . . 18  |-  ran  ( NN  X.  { 0 } )  =  { 0 }
108103, 107eqtri 2644 . . . . . . . . . . . . . . . . 17  |-  ran  seq 1 (  +  , 
( m  e.  NN  |->  0 ) )  =  { 0 }
109108supeq1i 8353 . . . . . . . . . . . . . . . 16  |-  sup ( ran  seq 1 (  +  ,  ( m  e.  NN  |->  0 ) ) ,  RR* ,  <  )  =  sup ( { 0 } ,  RR* ,  <  )
110 xrltso 11974 . . . . . . . . . . . . . . . . 17  |-  <  Or  RR*
111 0xr 10086 . . . . . . . . . . . . . . . . 17  |-  0  e.  RR*
112 supsn 8378 . . . . . . . . . . . . . . . . 17  |-  ( (  <  Or  RR*  /\  0  e.  RR* )  ->  sup ( { 0 } ,  RR* ,  <  )  =  0 )
113110, 111, 112mp2an 708 . . . . . . . . . . . . . . . 16  |-  sup ( { 0 } ,  RR* ,  <  )  =  0
114109, 113eqtri 2644 . . . . . . . . . . . . . . 15  |-  sup ( ran  seq 1 (  +  ,  ( m  e.  NN  |->  0 ) ) ,  RR* ,  <  )  =  0
11581, 114syl6eq 2672 . . . . . . . . . . . . . 14  |-  ( A. l  e.  NN  (
( f `  l
)  C_  RR  /\  ( vol* `  ( f `
 l ) )  =  0 )  ->  sup ( ran  seq 1
(  +  ,  ( m  e.  NN  |->  ( vol* `  (
f `  m )
) ) ) , 
RR* ,  <  )  =  0 )
116115adantl 482 . . . . . . . . . . . . 13  |-  ( ( f : NN -onto-> A  /\  A. l  e.  NN  ( ( f `  l )  C_  RR  /\  ( vol* `  ( f `  l
) )  =  0 ) )  ->  sup ( ran  seq 1 (  +  ,  ( m  e.  NN  |->  ( vol* `  ( f `  m ) ) ) ) ,  RR* ,  <  )  =  0 )
11763, 70, 1163brtr3d 4684 . . . . . . . . . . . 12  |-  ( ( f : NN -onto-> A  /\  A. l  e.  NN  ( ( f `  l )  C_  RR  /\  ( vol* `  ( f `  l
) )  =  0 ) )  ->  ( vol* `  U. A
)  <_  0 )
118117ex 450 . . . . . . . . . . 11  |-  ( f : NN -onto-> A  -> 
( A. l  e.  NN  ( ( f `
 l )  C_  RR  /\  ( vol* `  ( f `  l
) )  =  0 )  ->  ( vol* `  U. A )  <_  0 ) )
11949, 118sylbid 230 . . . . . . . . . 10  |-  ( f : NN -onto-> A  -> 
( A. x  e.  A  ( x  C_  RR  /\  ( vol* `  x )  =  0 )  ->  ( vol* `  U. A )  <_  0 ) )
120119exlimiv 1858 . . . . . . . . 9  |-  ( E. f  f : NN -onto-> A  ->  ( A. x  e.  A  ( x  C_  RR  /\  ( vol* `  x )  =  0 )  -> 
( vol* `  U. A )  <_  0
) )
121120imp 445 . . . . . . . 8  |-  ( ( E. f  f : NN -onto-> A  /\  A. x  e.  A  ( x  C_  RR  /\  ( vol* `  x )  =  0 ) )  ->  ( vol* `  U. A )  <_ 
0 )
12216, 38, 121syl2an 494 . . . . . . 7  |-  ( ( ( A  =/=  (/)  /\  A  ~<_  NN )  /\  ( A. x  e.  A  x  ~<_  NN  /\  U. A  C_  RR ) )  -> 
( vol* `  U. A )  <_  0
)
123 ovolcl 23246 . . . . . . . . 9  |-  ( U. A  C_  RR  ->  ( vol* `  U. A
)  e.  RR* )
124 xrletri3 11985 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\  ( vol* `  U. A
)  e.  RR* )  ->  ( 0  =  ( vol* `  U. A )  <->  ( 0  <_  ( vol* `  U. A )  /\  ( vol* `  U. A )  <_  0
) ) )
125111, 123, 124sylancr 695 . . . . . . . 8  |-  ( U. A  C_  RR  ->  (
0  =  ( vol* `  U. A )  <-> 
( 0  <_  ( vol* `  U. A
)  /\  ( vol* `  U. A )  <_  0 ) ) )
126125ad2antll 765 . . . . . . 7  |-  ( ( ( A  =/=  (/)  /\  A  ~<_  NN )  /\  ( A. x  e.  A  x  ~<_  NN  /\  U. A  C_  RR ) )  -> 
( 0  =  ( vol* `  U. A )  <->  ( 0  <_  ( vol* `  U. A )  /\  ( vol* `  U. A )  <_  0
) ) )
1279, 122, 126mpbir2and 957 . . . . . 6  |-  ( ( ( A  =/=  (/)  /\  A  ~<_  NN )  /\  ( A. x  e.  A  x  ~<_  NN  /\  U. A  C_  RR ) )  -> 
0  =  ( vol* `  U. A ) )
128127expl 648 . . . . 5  |-  ( A  =/=  (/)  ->  ( ( A  ~<_  NN  /\  ( A. x  e.  A  x  ~<_  NN  /\  U. A  C_  RR ) )  -> 
0  =  ( vol* `  U. A ) ) )
1297, 128pm2.61ine 2877 . . . 4  |-  ( ( A  ~<_  NN  /\  ( A. x  e.  A  x  ~<_  NN  /\  U. A  C_  RR ) )  -> 
0  =  ( vol* `  U. A ) )
130 renepnf 10087 . . . . . . 7  |-  ( 0  e.  RR  ->  0  =/= +oo )
13156, 130mp1i 13 . . . . . 6  |-  ( U. A  =  RR  ->  0  =/= +oo )
132 fveq2 6191 . . . . . . 7  |-  ( U. A  =  RR  ->  ( vol* `  U. A )  =  ( vol* `  RR ) )
133 ovolre 23293 . . . . . . 7  |-  ( vol* `  RR )  = +oo
134132, 133syl6eq 2672 . . . . . 6  |-  ( U. A  =  RR  ->  ( vol* `  U. A )  = +oo )
135131, 134neeqtrrd 2868 . . . . 5  |-  ( U. A  =  RR  ->  0  =/=  ( vol* `  U. A ) )
136135necon2i 2828 . . . 4  |-  ( 0  =  ( vol* `  U. A )  ->  U. A  =/=  RR )
137129, 136syl 17 . . 3  |-  ( ( A  ~<_  NN  /\  ( A. x  e.  A  x  ~<_  NN  /\  U. A  C_  RR ) )  ->  U. A  =/=  RR )
138137expr 643 . 2  |-  ( ( A  ~<_  NN  /\  A. x  e.  A  x  ~<_  NN )  ->  ( U. A  C_  RR  ->  U. A  =/= 
RR ) )
139 eqimss 3657 . . 3  |-  ( U. A  =  RR  ->  U. A  C_  RR )
140139necon3bi 2820 . 2  |-  ( -. 
U. A  C_  RR  ->  U. A  =/=  RR )
141138, 140pm2.61d1 171 1  |-  ( ( A  ~<_  NN  /\  A. x  e.  A  x  ~<_  NN )  ->  U. A  =/=  RR )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200    C_ wss 3574   (/)c0 3915   {csn 4177   U.cuni 4436   U_ciun 4520   class class class wbr 4653    |-> cmpt 4729    Or wor 5034    X. cxp 5112   ran crn 5115   "cima 5117   Fun wfun 5882    Fn wfn 5883   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650   omcom 7065    ~~ cen 7952    ~<_ cdom 7953    ~< csdm 7954   Fincfn 7955   supcsup 8346   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075   NNcn 11020   ZZcz 11377   ZZ>=cuz 11687    seqcseq 12801   vol*covol 23231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-ovol 23233
This theorem is referenced by:  ex-ovoliunnfl  33452
  Copyright terms: Public domain W3C validator