| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neips | Structured version Visualization version Unicode version | ||
| Description: A neighborhood of a set is a neighborhood of every point in the set. Proposition of [BourbakiTop1] p. I.2. (Contributed by FL, 16-Nov-2006.) |
| Ref | Expression |
|---|---|
| neips.1 |
|
| Ref | Expression |
|---|---|
| neips |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi 4339 |
. . . . . 6
| |
| 2 | neiss 20913 |
. . . . . 6
| |
| 3 | 1, 2 | syl3an3 1361 |
. . . . 5
|
| 4 | 3 | 3exp 1264 |
. . . 4
|
| 5 | 4 | ralrimdv 2968 |
. . 3
|
| 6 | 5 | 3ad2ant1 1082 |
. 2
|
| 7 | r19.28zv 4066 |
. . . . 5
| |
| 8 | 7 | 3ad2ant3 1084 |
. . . 4
|
| 9 | ssrab2 3687 |
. . . . . . . . . 10
| |
| 10 | uniopn 20702 |
. . . . . . . . . 10
| |
| 11 | 9, 10 | mpan2 707 |
. . . . . . . . 9
|
| 12 | 11 | ad2antrr 762 |
. . . . . . . 8
|
| 13 | sseq1 3626 |
. . . . . . . . . . . . . . . 16
| |
| 14 | 13 | elrab 3363 |
. . . . . . . . . . . . . . 15
|
| 15 | elunii 4441 |
. . . . . . . . . . . . . . 15
| |
| 16 | 14, 15 | sylan2br 493 |
. . . . . . . . . . . . . 14
|
| 17 | 16 | an12s 843 |
. . . . . . . . . . . . 13
|
| 18 | 17 | rexlimiva 3028 |
. . . . . . . . . . . 12
|
| 19 | 18 | ralimi 2952 |
. . . . . . . . . . 11
|
| 20 | dfss3 3592 |
. . . . . . . . . . 11
| |
| 21 | 19, 20 | sylibr 224 |
. . . . . . . . . 10
|
| 22 | 21 | adantl 482 |
. . . . . . . . 9
|
| 23 | unissb 4469 |
. . . . . . . . . 10
| |
| 24 | sseq1 3626 |
. . . . . . . . . . . 12
| |
| 25 | 24 | elrab 3363 |
. . . . . . . . . . 11
|
| 26 | 25 | simprbi 480 |
. . . . . . . . . 10
|
| 27 | 23, 26 | mprgbir 2927 |
. . . . . . . . 9
|
| 28 | 22, 27 | jctir 561 |
. . . . . . . 8
|
| 29 | sseq2 3627 |
. . . . . . . . . 10
| |
| 30 | sseq1 3626 |
. . . . . . . . . 10
| |
| 31 | 29, 30 | anbi12d 747 |
. . . . . . . . 9
|
| 32 | 31 | rspcev 3309 |
. . . . . . . 8
|
| 33 | 12, 28, 32 | syl2anc 693 |
. . . . . . 7
|
| 34 | 33 | ex 450 |
. . . . . 6
|
| 35 | 34 | anim2d 589 |
. . . . 5
|
| 36 | 35 | 3adant3 1081 |
. . . 4
|
| 37 | 8, 36 | sylbid 230 |
. . 3
|
| 38 | ssel2 3598 |
. . . . . . 7
| |
| 39 | neips.1 |
. . . . . . . 8
| |
| 40 | 39 | isneip 20909 |
. . . . . . 7
|
| 41 | 38, 40 | sylan2 491 |
. . . . . 6
|
| 42 | 41 | anassrs 680 |
. . . . 5
|
| 43 | 42 | ralbidva 2985 |
. . . 4
|
| 44 | 43 | 3adant3 1081 |
. . 3
|
| 45 | 39 | isnei 20907 |
. . . 4
|
| 46 | 45 | 3adant3 1081 |
. . 3
|
| 47 | 37, 44, 46 | 3imtr4d 283 |
. 2
|
| 48 | 6, 47 | impbid 202 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-top 20699 df-nei 20902 |
| This theorem is referenced by: utop2nei 22054 |
| Copyright terms: Public domain | W3C validator |