| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axpowndlem3 | Structured version Visualization version Unicode version | ||
| Description: Lemma for the Axiom of Power Sets with no distinct variable conditions. (Contributed by NM, 4-Jan-2002.) (Revised by Mario Carneiro, 10-Dec-2016.) (Proof shortened by Wolf Lammen, 10-Jun-2019.) |
| Ref | Expression |
|---|---|
| axpowndlem3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sp 2053 |
. . 3
| |
| 2 | 1 | con3i 150 |
. 2
|
| 3 | p0ex 4853 |
. . . . . . . 8
| |
| 4 | eleq2 2690 |
. . . . . . . . . 10
| |
| 5 | 4 | imbi2d 330 |
. . . . . . . . 9
|
| 6 | 5 | albidv 1849 |
. . . . . . . 8
|
| 7 | 3, 6 | spcev 3300 |
. . . . . . 7
|
| 8 | 0ex 4790 |
. . . . . . . . 9
| |
| 9 | 8 | snid 4208 |
. . . . . . . 8
|
| 10 | eleq1 2689 |
. . . . . . . 8
| |
| 11 | 9, 10 | mpbiri 248 |
. . . . . . 7
|
| 12 | 7, 11 | mpg 1724 |
. . . . . 6
|
| 13 | neq0 3930 |
. . . . . . . . . 10
| |
| 14 | 13 | con1bii 346 |
. . . . . . . . 9
|
| 15 | 14 | imbi1i 339 |
. . . . . . . 8
|
| 16 | 15 | albii 1747 |
. . . . . . 7
|
| 17 | 16 | exbii 1774 |
. . . . . 6
|
| 18 | 12, 17 | mpbir 221 |
. . . . 5
|
| 19 | nfnae 2318 |
. . . . . 6
| |
| 20 | nfnae 2318 |
. . . . . . 7
| |
| 21 | nfcvf2 2789 |
. . . . . . . . . . 11
| |
| 22 | nfcvd 2765 |
. . . . . . . . . . 11
| |
| 23 | 21, 22 | nfeld 2773 |
. . . . . . . . . 10
|
| 24 | 19, 23 | nfexd 2167 |
. . . . . . . . 9
|
| 25 | 24 | nfnd 1785 |
. . . . . . . 8
|
| 26 | 22, 21 | nfeld 2773 |
. . . . . . . 8
|
| 27 | 25, 26 | nfimd 1823 |
. . . . . . 7
|
| 28 | nfeqf2 2297 |
. . . . . . . . . . . 12
| |
| 29 | 19, 28 | nfan1 2068 |
. . . . . . . . . . 11
|
| 30 | elequ2 2004 |
. . . . . . . . . . . 12
| |
| 31 | 30 | adantl 482 |
. . . . . . . . . . 11
|
| 32 | 29, 31 | exbid 2091 |
. . . . . . . . . 10
|
| 33 | 32 | notbid 308 |
. . . . . . . . 9
|
| 34 | elequ1 1997 |
. . . . . . . . . 10
| |
| 35 | 34 | adantl 482 |
. . . . . . . . 9
|
| 36 | 33, 35 | imbi12d 334 |
. . . . . . . 8
|
| 37 | 36 | ex 450 |
. . . . . . 7
|
| 38 | 20, 27, 37 | cbvald 2277 |
. . . . . 6
|
| 39 | 19, 38 | exbid 2091 |
. . . . 5
|
| 40 | 18, 39 | mpbii 223 |
. . . 4
|
| 41 | nfae 2316 |
. . . . 5
| |
| 42 | nfae 2316 |
. . . . . 6
| |
| 43 | axc11r 2187 |
. . . . . . . . . 10
| |
| 44 | alnex 1706 |
. . . . . . . . . 10
| |
| 45 | alnex 1706 |
. . . . . . . . . 10
| |
| 46 | 43, 44, 45 | 3imtr3g 284 |
. . . . . . . . 9
|
| 47 | nd3 9411 |
. . . . . . . . . 10
| |
| 48 | 47 | pm2.21d 118 |
. . . . . . . . 9
|
| 49 | 46, 48 | jad 174 |
. . . . . . . 8
|
| 50 | 49 | spsd 2057 |
. . . . . . 7
|
| 51 | 50 | imim1d 82 |
. . . . . 6
|
| 52 | 42, 51 | alimd 2081 |
. . . . 5
|
| 53 | 41, 52 | eximd 2085 |
. . . 4
|
| 54 | 40, 53 | syl5com 31 |
. . 3
|
| 55 | axpowndlem2 9420 |
. . 3
| |
| 56 | 54, 55 | pm2.61d 170 |
. 2
|
| 57 | 2, 56 | syl 17 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-reg 8497 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-pw 4160 df-sn 4178 df-pr 4180 |
| This theorem is referenced by: axpowndlem4 9422 |
| Copyright terms: Public domain | W3C validator |