Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofrn2 Structured version   Visualization version   Unicode version

Theorem ofrn2 29442
Description: The range of the function operation. (Contributed by Thierry Arnoux, 21-Mar-2017.)
Hypotheses
Ref Expression
ofrn.1  |-  ( ph  ->  F : A --> B )
ofrn.2  |-  ( ph  ->  G : A --> B )
ofrn.3  |-  ( ph  ->  .+  : ( B  X.  B ) --> C )
ofrn.4  |-  ( ph  ->  A  e.  V )
Assertion
Ref Expression
ofrn2  |-  ( ph  ->  ran  ( F  oF  .+  G )  C_  (  .+  " ( ran 
F  X.  ran  G
) ) )

Proof of Theorem ofrn2
Dummy variables  x  y  z  a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ofrn.1 . . . . . . . 8  |-  ( ph  ->  F : A --> B )
2 ffn 6045 . . . . . . . 8  |-  ( F : A --> B  ->  F  Fn  A )
31, 2syl 17 . . . . . . 7  |-  ( ph  ->  F  Fn  A )
43adantr 481 . . . . . 6  |-  ( (
ph  /\  ( a  e.  A  /\  z  =  ( ( F `
 a )  .+  ( G `  a ) ) ) )  ->  F  Fn  A )
5 simprl 794 . . . . . 6  |-  ( (
ph  /\  ( a  e.  A  /\  z  =  ( ( F `
 a )  .+  ( G `  a ) ) ) )  -> 
a  e.  A )
6 fnfvelrn 6356 . . . . . 6  |-  ( ( F  Fn  A  /\  a  e.  A )  ->  ( F `  a
)  e.  ran  F
)
74, 5, 6syl2anc 693 . . . . 5  |-  ( (
ph  /\  ( a  e.  A  /\  z  =  ( ( F `
 a )  .+  ( G `  a ) ) ) )  -> 
( F `  a
)  e.  ran  F
)
8 ofrn.2 . . . . . . . 8  |-  ( ph  ->  G : A --> B )
9 ffn 6045 . . . . . . . 8  |-  ( G : A --> B  ->  G  Fn  A )
108, 9syl 17 . . . . . . 7  |-  ( ph  ->  G  Fn  A )
1110adantr 481 . . . . . 6  |-  ( (
ph  /\  ( a  e.  A  /\  z  =  ( ( F `
 a )  .+  ( G `  a ) ) ) )  ->  G  Fn  A )
12 fnfvelrn 6356 . . . . . 6  |-  ( ( G  Fn  A  /\  a  e.  A )  ->  ( G `  a
)  e.  ran  G
)
1311, 5, 12syl2anc 693 . . . . 5  |-  ( (
ph  /\  ( a  e.  A  /\  z  =  ( ( F `
 a )  .+  ( G `  a ) ) ) )  -> 
( G `  a
)  e.  ran  G
)
14 simprr 796 . . . . 5  |-  ( (
ph  /\  ( a  e.  A  /\  z  =  ( ( F `
 a )  .+  ( G `  a ) ) ) )  -> 
z  =  ( ( F `  a ) 
.+  ( G `  a ) ) )
15 rspceov 6692 . . . . 5  |-  ( ( ( F `  a
)  e.  ran  F  /\  ( G `  a
)  e.  ran  G  /\  z  =  (
( F `  a
)  .+  ( G `  a ) ) )  ->  E. x  e.  ran  F E. y  e.  ran  G  z  =  ( x 
.+  y ) )
167, 13, 14, 15syl3anc 1326 . . . 4  |-  ( (
ph  /\  ( a  e.  A  /\  z  =  ( ( F `
 a )  .+  ( G `  a ) ) ) )  ->  E. x  e.  ran  F E. y  e.  ran  G  z  =  ( x 
.+  y ) )
1716rexlimdvaa 3032 . . 3  |-  ( ph  ->  ( E. a  e.  A  z  =  ( ( F `  a
)  .+  ( G `  a ) )  ->  E. x  e.  ran  F E. y  e.  ran  G  z  =  ( x 
.+  y ) ) )
1817ss2abdv 3675 . 2  |-  ( ph  ->  { z  |  E. a  e.  A  z  =  ( ( F `
 a )  .+  ( G `  a ) ) }  C_  { z  |  E. x  e. 
ran  F E. y  e.  ran  G  z  =  ( x  .+  y
) } )
19 ofrn.4 . . . . 5  |-  ( ph  ->  A  e.  V )
20 inidm 3822 . . . . 5  |-  ( A  i^i  A )  =  A
21 eqidd 2623 . . . . 5  |-  ( (
ph  /\  a  e.  A )  ->  ( F `  a )  =  ( F `  a ) )
22 eqidd 2623 . . . . 5  |-  ( (
ph  /\  a  e.  A )  ->  ( G `  a )  =  ( G `  a ) )
233, 10, 19, 19, 20, 21, 22offval 6904 . . . 4  |-  ( ph  ->  ( F  oF  .+  G )  =  ( a  e.  A  |->  ( ( F `  a )  .+  ( G `  a )
) ) )
2423rneqd 5353 . . 3  |-  ( ph  ->  ran  ( F  oF  .+  G )  =  ran  ( a  e.  A  |->  ( ( F `
 a )  .+  ( G `  a ) ) ) )
25 eqid 2622 . . . 4  |-  ( a  e.  A  |->  ( ( F `  a ) 
.+  ( G `  a ) ) )  =  ( a  e.  A  |->  ( ( F `
 a )  .+  ( G `  a ) ) )
2625rnmpt 5371 . . 3  |-  ran  (
a  e.  A  |->  ( ( F `  a
)  .+  ( G `  a ) ) )  =  { z  |  E. a  e.  A  z  =  ( ( F `  a )  .+  ( G `  a
) ) }
2724, 26syl6eq 2672 . 2  |-  ( ph  ->  ran  ( F  oF  .+  G )  =  { z  |  E. a  e.  A  z  =  ( ( F `
 a )  .+  ( G `  a ) ) } )
28 ofrn.3 . . . . 5  |-  ( ph  ->  .+  : ( B  X.  B ) --> C )
29 ffn 6045 . . . . 5  |-  (  .+  : ( B  X.  B ) --> C  ->  .+  Fn  ( B  X.  B ) )
3028, 29syl 17 . . . 4  |-  ( ph  ->  .+  Fn  ( B  X.  B ) )
31 frn 6053 . . . . . 6  |-  ( F : A --> B  ->  ran  F  C_  B )
321, 31syl 17 . . . . 5  |-  ( ph  ->  ran  F  C_  B
)
33 frn 6053 . . . . . 6  |-  ( G : A --> B  ->  ran  G  C_  B )
348, 33syl 17 . . . . 5  |-  ( ph  ->  ran  G  C_  B
)
35 xpss12 5225 . . . . 5  |-  ( ( ran  F  C_  B  /\  ran  G  C_  B
)  ->  ( ran  F  X.  ran  G ) 
C_  ( B  X.  B ) )
3632, 34, 35syl2anc 693 . . . 4  |-  ( ph  ->  ( ran  F  X.  ran  G )  C_  ( B  X.  B ) )
37 ovelimab 6812 . . . 4  |-  ( ( 
.+  Fn  ( B  X.  B )  /\  ( ran  F  X.  ran  G
)  C_  ( B  X.  B ) )  -> 
( z  e.  ( 
.+  " ( ran  F  X.  ran  G ) )  <->  E. x  e.  ran  F E. y  e.  ran  G  z  =  ( x 
.+  y ) ) )
3830, 36, 37syl2anc 693 . . 3  |-  ( ph  ->  ( z  e.  ( 
.+  " ( ran  F  X.  ran  G ) )  <->  E. x  e.  ran  F E. y  e.  ran  G  z  =  ( x 
.+  y ) ) )
3938abbi2dv 2742 . 2  |-  ( ph  ->  (  .+  " ( ran  F  X.  ran  G
) )  =  {
z  |  E. x  e.  ran  F E. y  e.  ran  G  z  =  ( x  .+  y
) } )
4018, 27, 393sstr4d 3648 1  |-  ( ph  ->  ran  ( F  oF  .+  G )  C_  (  .+  " ( ran 
F  X.  ran  G
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   E.wrex 2913    C_ wss 3574    |-> cmpt 4729    X. cxp 5112   ran crn 5115   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897
This theorem is referenced by:  sibfof  30402
  Copyright terms: Public domain W3C validator