| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ofrn2 | Structured version Visualization version Unicode version | ||
| Description: The range of the function operation. (Contributed by Thierry Arnoux, 21-Mar-2017.) |
| Ref | Expression |
|---|---|
| ofrn.1 |
|
| ofrn.2 |
|
| ofrn.3 |
|
| ofrn.4 |
|
| Ref | Expression |
|---|---|
| ofrn2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ofrn.1 |
. . . . . . . 8
| |
| 2 | ffn 6045 |
. . . . . . . 8
| |
| 3 | 1, 2 | syl 17 |
. . . . . . 7
|
| 4 | 3 | adantr 481 |
. . . . . 6
|
| 5 | simprl 794 |
. . . . . 6
| |
| 6 | fnfvelrn 6356 |
. . . . . 6
| |
| 7 | 4, 5, 6 | syl2anc 693 |
. . . . 5
|
| 8 | ofrn.2 |
. . . . . . . 8
| |
| 9 | ffn 6045 |
. . . . . . . 8
| |
| 10 | 8, 9 | syl 17 |
. . . . . . 7
|
| 11 | 10 | adantr 481 |
. . . . . 6
|
| 12 | fnfvelrn 6356 |
. . . . . 6
| |
| 13 | 11, 5, 12 | syl2anc 693 |
. . . . 5
|
| 14 | simprr 796 |
. . . . 5
| |
| 15 | rspceov 6692 |
. . . . 5
| |
| 16 | 7, 13, 14, 15 | syl3anc 1326 |
. . . 4
|
| 17 | 16 | rexlimdvaa 3032 |
. . 3
|
| 18 | 17 | ss2abdv 3675 |
. 2
|
| 19 | ofrn.4 |
. . . . 5
| |
| 20 | inidm 3822 |
. . . . 5
| |
| 21 | eqidd 2623 |
. . . . 5
| |
| 22 | eqidd 2623 |
. . . . 5
| |
| 23 | 3, 10, 19, 19, 20, 21, 22 | offval 6904 |
. . . 4
|
| 24 | 23 | rneqd 5353 |
. . 3
|
| 25 | eqid 2622 |
. . . 4
| |
| 26 | 25 | rnmpt 5371 |
. . 3
|
| 27 | 24, 26 | syl6eq 2672 |
. 2
|
| 28 | ofrn.3 |
. . . . 5
| |
| 29 | ffn 6045 |
. . . . 5
| |
| 30 | 28, 29 | syl 17 |
. . . 4
|
| 31 | frn 6053 |
. . . . . 6
| |
| 32 | 1, 31 | syl 17 |
. . . . 5
|
| 33 | frn 6053 |
. . . . . 6
| |
| 34 | 8, 33 | syl 17 |
. . . . 5
|
| 35 | xpss12 5225 |
. . . . 5
| |
| 36 | 32, 34, 35 | syl2anc 693 |
. . . 4
|
| 37 | ovelimab 6812 |
. . . 4
| |
| 38 | 30, 36, 37 | syl2anc 693 |
. . 3
|
| 39 | 38 | abbi2dv 2742 |
. 2
|
| 40 | 18, 27, 39 | 3sstr4d 3648 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 |
| This theorem is referenced by: sibfof 30402 |
| Copyright terms: Public domain | W3C validator |