| Step | Hyp | Ref
| Expression |
| 1 | | ofrn.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 2 | | ffn 6045 |
. . . . . . . 8
⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) |
| 3 | 1, 2 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 4 | 3 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑧 = ((𝐹‘𝑎) + (𝐺‘𝑎)))) → 𝐹 Fn 𝐴) |
| 5 | | simprl 794 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑧 = ((𝐹‘𝑎) + (𝐺‘𝑎)))) → 𝑎 ∈ 𝐴) |
| 6 | | fnfvelrn 6356 |
. . . . . 6
⊢ ((𝐹 Fn 𝐴 ∧ 𝑎 ∈ 𝐴) → (𝐹‘𝑎) ∈ ran 𝐹) |
| 7 | 4, 5, 6 | syl2anc 693 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑧 = ((𝐹‘𝑎) + (𝐺‘𝑎)))) → (𝐹‘𝑎) ∈ ran 𝐹) |
| 8 | | ofrn.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐺:𝐴⟶𝐵) |
| 9 | | ffn 6045 |
. . . . . . . 8
⊢ (𝐺:𝐴⟶𝐵 → 𝐺 Fn 𝐴) |
| 10 | 8, 9 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐺 Fn 𝐴) |
| 11 | 10 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑧 = ((𝐹‘𝑎) + (𝐺‘𝑎)))) → 𝐺 Fn 𝐴) |
| 12 | | fnfvelrn 6356 |
. . . . . 6
⊢ ((𝐺 Fn 𝐴 ∧ 𝑎 ∈ 𝐴) → (𝐺‘𝑎) ∈ ran 𝐺) |
| 13 | 11, 5, 12 | syl2anc 693 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑧 = ((𝐹‘𝑎) + (𝐺‘𝑎)))) → (𝐺‘𝑎) ∈ ran 𝐺) |
| 14 | | simprr 796 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑧 = ((𝐹‘𝑎) + (𝐺‘𝑎)))) → 𝑧 = ((𝐹‘𝑎) + (𝐺‘𝑎))) |
| 15 | | rspceov 6692 |
. . . . 5
⊢ (((𝐹‘𝑎) ∈ ran 𝐹 ∧ (𝐺‘𝑎) ∈ ran 𝐺 ∧ 𝑧 = ((𝐹‘𝑎) + (𝐺‘𝑎))) → ∃𝑥 ∈ ran 𝐹∃𝑦 ∈ ran 𝐺 𝑧 = (𝑥 + 𝑦)) |
| 16 | 7, 13, 14, 15 | syl3anc 1326 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑧 = ((𝐹‘𝑎) + (𝐺‘𝑎)))) → ∃𝑥 ∈ ran 𝐹∃𝑦 ∈ ran 𝐺 𝑧 = (𝑥 + 𝑦)) |
| 17 | 16 | rexlimdvaa 3032 |
. . 3
⊢ (𝜑 → (∃𝑎 ∈ 𝐴 𝑧 = ((𝐹‘𝑎) + (𝐺‘𝑎)) → ∃𝑥 ∈ ran 𝐹∃𝑦 ∈ ran 𝐺 𝑧 = (𝑥 + 𝑦))) |
| 18 | 17 | ss2abdv 3675 |
. 2
⊢ (𝜑 → {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = ((𝐹‘𝑎) + (𝐺‘𝑎))} ⊆ {𝑧 ∣ ∃𝑥 ∈ ran 𝐹∃𝑦 ∈ ran 𝐺 𝑧 = (𝑥 + 𝑦)}) |
| 19 | | ofrn.4 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 20 | | inidm 3822 |
. . . . 5
⊢ (𝐴 ∩ 𝐴) = 𝐴 |
| 21 | | eqidd 2623 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝐹‘𝑎) = (𝐹‘𝑎)) |
| 22 | | eqidd 2623 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝐺‘𝑎) = (𝐺‘𝑎)) |
| 23 | 3, 10, 19, 19, 20, 21, 22 | offval 6904 |
. . . 4
⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺) = (𝑎 ∈ 𝐴 ↦ ((𝐹‘𝑎) + (𝐺‘𝑎)))) |
| 24 | 23 | rneqd 5353 |
. . 3
⊢ (𝜑 → ran (𝐹 ∘𝑓 + 𝐺) = ran (𝑎 ∈ 𝐴 ↦ ((𝐹‘𝑎) + (𝐺‘𝑎)))) |
| 25 | | eqid 2622 |
. . . 4
⊢ (𝑎 ∈ 𝐴 ↦ ((𝐹‘𝑎) + (𝐺‘𝑎))) = (𝑎 ∈ 𝐴 ↦ ((𝐹‘𝑎) + (𝐺‘𝑎))) |
| 26 | 25 | rnmpt 5371 |
. . 3
⊢ ran
(𝑎 ∈ 𝐴 ↦ ((𝐹‘𝑎) + (𝐺‘𝑎))) = {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = ((𝐹‘𝑎) + (𝐺‘𝑎))} |
| 27 | 24, 26 | syl6eq 2672 |
. 2
⊢ (𝜑 → ran (𝐹 ∘𝑓 + 𝐺) = {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = ((𝐹‘𝑎) + (𝐺‘𝑎))}) |
| 28 | | ofrn.3 |
. . . . 5
⊢ (𝜑 → + :(𝐵 × 𝐵)⟶𝐶) |
| 29 | | ffn 6045 |
. . . . 5
⊢ ( + :(𝐵 × 𝐵)⟶𝐶 → + Fn (𝐵 × 𝐵)) |
| 30 | 28, 29 | syl 17 |
. . . 4
⊢ (𝜑 → + Fn (𝐵 × 𝐵)) |
| 31 | | frn 6053 |
. . . . . 6
⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) |
| 32 | 1, 31 | syl 17 |
. . . . 5
⊢ (𝜑 → ran 𝐹 ⊆ 𝐵) |
| 33 | | frn 6053 |
. . . . . 6
⊢ (𝐺:𝐴⟶𝐵 → ran 𝐺 ⊆ 𝐵) |
| 34 | 8, 33 | syl 17 |
. . . . 5
⊢ (𝜑 → ran 𝐺 ⊆ 𝐵) |
| 35 | | xpss12 5225 |
. . . . 5
⊢ ((ran
𝐹 ⊆ 𝐵 ∧ ran 𝐺 ⊆ 𝐵) → (ran 𝐹 × ran 𝐺) ⊆ (𝐵 × 𝐵)) |
| 36 | 32, 34, 35 | syl2anc 693 |
. . . 4
⊢ (𝜑 → (ran 𝐹 × ran 𝐺) ⊆ (𝐵 × 𝐵)) |
| 37 | | ovelimab 6812 |
. . . 4
⊢ (( + Fn (𝐵 × 𝐵) ∧ (ran 𝐹 × ran 𝐺) ⊆ (𝐵 × 𝐵)) → (𝑧 ∈ ( + “ (ran 𝐹 × ran 𝐺)) ↔ ∃𝑥 ∈ ran 𝐹∃𝑦 ∈ ran 𝐺 𝑧 = (𝑥 + 𝑦))) |
| 38 | 30, 36, 37 | syl2anc 693 |
. . 3
⊢ (𝜑 → (𝑧 ∈ ( + “ (ran 𝐹 × ran 𝐺)) ↔ ∃𝑥 ∈ ran 𝐹∃𝑦 ∈ ran 𝐺 𝑧 = (𝑥 + 𝑦))) |
| 39 | 38 | abbi2dv 2742 |
. 2
⊢ (𝜑 → ( + “ (ran 𝐹 × ran 𝐺)) = {𝑧 ∣ ∃𝑥 ∈ ran 𝐹∃𝑦 ∈ ran 𝐺 𝑧 = (𝑥 + 𝑦)}) |
| 40 | 18, 27, 39 | 3sstr4d 3648 |
1
⊢ (𝜑 → ran (𝐹 ∘𝑓 + 𝐺) ⊆ ( + “ (ran 𝐹 × ran 𝐺))) |