MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onelini Structured version   Visualization version   Unicode version

Theorem onelini 5839
Description: An element of an ordinal number equals the intersection with it. (Contributed by NM, 11-Jun-1994.)
Hypothesis
Ref Expression
on.1  |-  A  e.  On
Assertion
Ref Expression
onelini  |-  ( B  e.  A  ->  B  =  ( B  i^i  A ) )

Proof of Theorem onelini
StepHypRef Expression
1 on.1 . . 3  |-  A  e.  On
21onelssi 5836 . 2  |-  ( B  e.  A  ->  B  C_  A )
3 dfss 3589 . 2  |-  ( B 
C_  A  <->  B  =  ( B  i^i  A ) )
42, 3sylib 208 1  |-  ( B  e.  A  ->  B  =  ( B  i^i  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990    i^i cin 3573    C_ wss 3574   Oncon0 5723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-in 3581  df-ss 3588  df-uni 4437  df-tr 4753  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator