MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfth Structured version   Visualization version   Unicode version

Theorem isfth 16574
Description: Value of the set of faithful functors between two categories. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypothesis
Ref Expression
isfth.b  |-  B  =  ( Base `  C
)
Assertion
Ref Expression
isfth  |-  ( F ( C Faith  D ) G  <->  ( F ( C  Func  D ) G  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x G y ) ) )
Distinct variable groups:    x, y, B    x, C, y    x, D, y    x, F, y   
x, G, y

Proof of Theorem isfth
Dummy variables  c 
d  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fthfunc 16567 . . 3  |-  ( C Faith 
D )  C_  ( C  Func  D )
21ssbri 4697 . 2  |-  ( F ( C Faith  D ) G  ->  F ( C  Func  D ) G )
3 df-br 4654 . . . . . . 7  |-  ( F ( C  Func  D
) G  <->  <. F ,  G >.  e.  ( C 
Func  D ) )
4 funcrcl 16523 . . . . . . 7  |-  ( <. F ,  G >.  e.  ( C  Func  D
)  ->  ( C  e.  Cat  /\  D  e. 
Cat ) )
53, 4sylbi 207 . . . . . 6  |-  ( F ( C  Func  D
) G  ->  ( C  e.  Cat  /\  D  e.  Cat ) )
6 oveq12 6659 . . . . . . . . . 10  |-  ( ( c  =  C  /\  d  =  D )  ->  ( c  Func  d
)  =  ( C 
Func  D ) )
76breqd 4664 . . . . . . . . 9  |-  ( ( c  =  C  /\  d  =  D )  ->  ( f ( c 
Func  d ) g  <-> 
f ( C  Func  D ) g ) )
8 simpl 473 . . . . . . . . . . . 12  |-  ( ( c  =  C  /\  d  =  D )  ->  c  =  C )
98fveq2d 6195 . . . . . . . . . . 11  |-  ( ( c  =  C  /\  d  =  D )  ->  ( Base `  c
)  =  ( Base `  C ) )
10 isfth.b . . . . . . . . . . 11  |-  B  =  ( Base `  C
)
119, 10syl6eqr 2674 . . . . . . . . . 10  |-  ( ( c  =  C  /\  d  =  D )  ->  ( Base `  c
)  =  B )
1211raleqdv 3144 . . . . . . . . . 10  |-  ( ( c  =  C  /\  d  =  D )  ->  ( A. y  e.  ( Base `  c
) Fun  `' (
x g y )  <->  A. y  e.  B  Fun  `' ( x g y ) ) )
1311, 12raleqbidv 3152 . . . . . . . . 9  |-  ( ( c  =  C  /\  d  =  D )  ->  ( A. x  e.  ( Base `  c
) A. y  e.  ( Base `  c
) Fun  `' (
x g y )  <->  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) )
147, 13anbi12d 747 . . . . . . . 8  |-  ( ( c  =  C  /\  d  =  D )  ->  ( ( f ( c  Func  d )
g  /\  A. x  e.  ( Base `  c
) A. y  e.  ( Base `  c
) Fun  `' (
x g y ) )  <->  ( f ( C  Func  D )
g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) ) )
1514opabbidv 4716 . . . . . . 7  |-  ( ( c  =  C  /\  d  =  D )  ->  { <. f ,  g
>.  |  ( f
( c  Func  d
) g  /\  A. x  e.  ( Base `  c ) A. y  e.  ( Base `  c
) Fun  `' (
x g y ) ) }  =  { <. f ,  g >.  |  ( f ( C  Func  D )
g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) } )
16 df-fth 16565 . . . . . . 7  |- Faith  =  ( c  e.  Cat , 
d  e.  Cat  |->  {
<. f ,  g >.  |  ( f ( c  Func  d )
g  /\  A. x  e.  ( Base `  c
) A. y  e.  ( Base `  c
) Fun  `' (
x g y ) ) } )
17 ovex 6678 . . . . . . . 8  |-  ( C 
Func  D )  e.  _V
18 simpl 473 . . . . . . . . . 10  |-  ( ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) )  ->  f
( C  Func  D
) g )
1918ssopab2i 5003 . . . . . . . . 9  |-  { <. f ,  g >.  |  ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) }  C_  {
<. f ,  g >.  |  f ( C 
Func  D ) g }
20 opabss 4714 . . . . . . . . 9  |-  { <. f ,  g >.  |  f ( C  Func  D
) g }  C_  ( C  Func  D )
2119, 20sstri 3612 . . . . . . . 8  |-  { <. f ,  g >.  |  ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) }  C_  ( C  Func  D )
2217, 21ssexi 4803 . . . . . . 7  |-  { <. f ,  g >.  |  ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) }  e.  _V
2315, 16, 22ovmpt2a 6791 . . . . . 6  |-  ( ( C  e.  Cat  /\  D  e.  Cat )  ->  ( C Faith  D )  =  { <. f ,  g >.  |  ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) } )
245, 23syl 17 . . . . 5  |-  ( F ( C  Func  D
) G  ->  ( C Faith  D )  =  { <. f ,  g >.  |  ( f ( C  Func  D )
g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) } )
2524breqd 4664 . . . 4  |-  ( F ( C  Func  D
) G  ->  ( F ( C Faith  D
) G  <->  F { <. f ,  g >.  |  ( f ( C  Func  D )
g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) } G ) )
26 relfunc 16522 . . . . . 6  |-  Rel  ( C  Func  D )
27 brrelex12 5155 . . . . . 6  |-  ( ( Rel  ( C  Func  D )  /\  F ( C  Func  D ) G )  ->  ( F  e.  _V  /\  G  e.  _V ) )
2826, 27mpan 706 . . . . 5  |-  ( F ( C  Func  D
) G  ->  ( F  e.  _V  /\  G  e.  _V ) )
29 breq12 4658 . . . . . . 7  |-  ( ( f  =  F  /\  g  =  G )  ->  ( f ( C 
Func  D ) g  <->  F ( C  Func  D ) G ) )
30 simpr 477 . . . . . . . . . . 11  |-  ( ( f  =  F  /\  g  =  G )  ->  g  =  G )
3130oveqd 6667 . . . . . . . . . 10  |-  ( ( f  =  F  /\  g  =  G )  ->  ( x g y )  =  ( x G y ) )
3231cnveqd 5298 . . . . . . . . 9  |-  ( ( f  =  F  /\  g  =  G )  ->  `' ( x g y )  =  `' ( x G y ) )
3332funeqd 5910 . . . . . . . 8  |-  ( ( f  =  F  /\  g  =  G )  ->  ( Fun  `' ( x g y )  <->  Fun  `' ( x G y ) ) )
34332ralbidv 2989 . . . . . . 7  |-  ( ( f  =  F  /\  g  =  G )  ->  ( A. x  e.  B  A. y  e.  B  Fun  `' ( x g y )  <->  A. x  e.  B  A. y  e.  B  Fun  `' ( x G y ) ) )
3529, 34anbi12d 747 . . . . . 6  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( f ( C  Func  D )
g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) )  <->  ( F ( C  Func  D ) G  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x G y ) ) ) )
36 eqid 2622 . . . . . 6  |-  { <. f ,  g >.  |  ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) }  =  { <. f ,  g
>.  |  ( f
( C  Func  D
) g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) }
3735, 36brabga 4989 . . . . 5  |-  ( ( F  e.  _V  /\  G  e.  _V )  ->  ( F { <. f ,  g >.  |  ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) } G  <->  ( F ( C  Func  D ) G  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x G y ) ) ) )
3828, 37syl 17 . . . 4  |-  ( F ( C  Func  D
) G  ->  ( F { <. f ,  g
>.  |  ( f
( C  Func  D
) g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) } G  <->  ( F ( C  Func  D ) G  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x G y ) ) ) )
3925, 38bitrd 268 . . 3  |-  ( F ( C  Func  D
) G  ->  ( F ( C Faith  D
) G  <->  ( F
( C  Func  D
) G  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x G y ) ) ) )
4039bianabs 924 . 2  |-  ( F ( C  Func  D
) G  ->  ( F ( C Faith  D
) G  <->  A. x  e.  B  A. y  e.  B  Fun  `' ( x G y ) ) )
412, 40biadan2 674 1  |-  ( F ( C Faith  D ) G  <->  ( F ( C  Func  D ) G  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x G y ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200   <.cop 4183   class class class wbr 4653   {copab 4712   `'ccnv 5113   Rel wrel 5119   Fun wfun 5882   ` cfv 5888  (class class class)co 6650   Basecbs 15857   Catccat 16325    Func cfunc 16514   Faith cfth 16563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-func 16518  df-fth 16565
This theorem is referenced by:  isfth2  16575  fthpropd  16581  fthoppc  16583  fthres2b  16590  fthres2c  16591  fthres2  16592
  Copyright terms: Public domain W3C validator