| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isfull | Structured version Visualization version Unicode version | ||
| Description: Value of the set of full functors between two categories. (Contributed by Mario Carneiro, 27-Jan-2017.) |
| Ref | Expression |
|---|---|
| isfull.b |
|
| isfull.j |
|
| Ref | Expression |
|---|---|
| isfull |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fullfunc 16566 |
. . 3
| |
| 2 | 1 | ssbri 4697 |
. 2
|
| 3 | df-br 4654 |
. . . . . . 7
| |
| 4 | funcrcl 16523 |
. . . . . . 7
| |
| 5 | 3, 4 | sylbi 207 |
. . . . . 6
|
| 6 | oveq12 6659 |
. . . . . . . . . 10
| |
| 7 | 6 | breqd 4664 |
. . . . . . . . 9
|
| 8 | simpl 473 |
. . . . . . . . . . . 12
| |
| 9 | 8 | fveq2d 6195 |
. . . . . . . . . . 11
|
| 10 | isfull.b |
. . . . . . . . . . 11
| |
| 11 | 9, 10 | syl6eqr 2674 |
. . . . . . . . . 10
|
| 12 | simpr 477 |
. . . . . . . . . . . . . . 15
| |
| 13 | 12 | fveq2d 6195 |
. . . . . . . . . . . . . 14
|
| 14 | isfull.j |
. . . . . . . . . . . . . 14
| |
| 15 | 13, 14 | syl6eqr 2674 |
. . . . . . . . . . . . 13
|
| 16 | 15 | oveqd 6667 |
. . . . . . . . . . . 12
|
| 17 | 16 | eqeq2d 2632 |
. . . . . . . . . . 11
|
| 18 | 11, 17 | raleqbidv 3152 |
. . . . . . . . . 10
|
| 19 | 11, 18 | raleqbidv 3152 |
. . . . . . . . 9
|
| 20 | 7, 19 | anbi12d 747 |
. . . . . . . 8
|
| 21 | 20 | opabbidv 4716 |
. . . . . . 7
|
| 22 | df-full 16564 |
. . . . . . 7
| |
| 23 | ovex 6678 |
. . . . . . . 8
| |
| 24 | simpl 473 |
. . . . . . . . . 10
| |
| 25 | 24 | ssopab2i 5003 |
. . . . . . . . 9
|
| 26 | opabss 4714 |
. . . . . . . . 9
| |
| 27 | 25, 26 | sstri 3612 |
. . . . . . . 8
|
| 28 | 23, 27 | ssexi 4803 |
. . . . . . 7
|
| 29 | 21, 22, 28 | ovmpt2a 6791 |
. . . . . 6
|
| 30 | 5, 29 | syl 17 |
. . . . 5
|
| 31 | 30 | breqd 4664 |
. . . 4
|
| 32 | relfunc 16522 |
. . . . . 6
| |
| 33 | brrelex12 5155 |
. . . . . 6
| |
| 34 | 32, 33 | mpan 706 |
. . . . 5
|
| 35 | breq12 4658 |
. . . . . . 7
| |
| 36 | simpr 477 |
. . . . . . . . . . 11
| |
| 37 | 36 | oveqd 6667 |
. . . . . . . . . 10
|
| 38 | 37 | rneqd 5353 |
. . . . . . . . 9
|
| 39 | simpl 473 |
. . . . . . . . . . 11
| |
| 40 | 39 | fveq1d 6193 |
. . . . . . . . . 10
|
| 41 | 39 | fveq1d 6193 |
. . . . . . . . . 10
|
| 42 | 40, 41 | oveq12d 6668 |
. . . . . . . . 9
|
| 43 | 38, 42 | eqeq12d 2637 |
. . . . . . . 8
|
| 44 | 43 | 2ralbidv 2989 |
. . . . . . 7
|
| 45 | 35, 44 | anbi12d 747 |
. . . . . 6
|
| 46 | eqid 2622 |
. . . . . 6
| |
| 47 | 45, 46 | brabga 4989 |
. . . . 5
|
| 48 | 34, 47 | syl 17 |
. . . 4
|
| 49 | 31, 48 | bitrd 268 |
. . 3
|
| 50 | 49 | bianabs 924 |
. 2
|
| 51 | 2, 50 | biadan2 674 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-func 16518 df-full 16564 |
| This theorem is referenced by: isfull2 16571 fullpropd 16580 fulloppc 16582 fullres2c 16599 |
| Copyright terms: Public domain | W3C validator |