| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opbrop | Structured version Visualization version Unicode version | ||
| Description: Ordered pair membership in a relation. Special case. (Contributed by NM, 5-Aug-1995.) |
| Ref | Expression |
|---|---|
| opbrop.1 |
|
| opbrop.2 |
|
| Ref | Expression |
|---|---|
| opbrop |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi 5148 |
. . 3
| |
| 2 | opelxpi 5148 |
. . 3
| |
| 3 | 1, 2 | anim12i 590 |
. 2
|
| 4 | opex 4932 |
. . . 4
| |
| 5 | opex 4932 |
. . . 4
| |
| 6 | eleq1 2689 |
. . . . . 6
| |
| 7 | 6 | anbi1d 741 |
. . . . 5
|
| 8 | eqeq1 2626 |
. . . . . . . 8
| |
| 9 | 8 | anbi1d 741 |
. . . . . . 7
|
| 10 | 9 | anbi1d 741 |
. . . . . 6
|
| 11 | 10 | 4exbidv 1854 |
. . . . 5
|
| 12 | 7, 11 | anbi12d 747 |
. . . 4
|
| 13 | eleq1 2689 |
. . . . . 6
| |
| 14 | 13 | anbi2d 740 |
. . . . 5
|
| 15 | eqeq1 2626 |
. . . . . . . 8
| |
| 16 | 15 | anbi2d 740 |
. . . . . . 7
|
| 17 | 16 | anbi1d 741 |
. . . . . 6
|
| 18 | 17 | 4exbidv 1854 |
. . . . 5
|
| 19 | 14, 18 | anbi12d 747 |
. . . 4
|
| 20 | opbrop.2 |
. . . 4
| |
| 21 | 4, 5, 12, 19, 20 | brab 4998 |
. . 3
|
| 22 | opbrop.1 |
. . . . 5
| |
| 23 | 22 | copsex4g 4959 |
. . . 4
|
| 24 | 23 | anbi2d 740 |
. . 3
|
| 25 | 21, 24 | syl5bb 272 |
. 2
|
| 26 | 3, 25 | mpbirand 530 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 |
| This theorem is referenced by: ecopoveq 7848 |
| Copyright terms: Public domain | W3C validator |