| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4exbidv | Structured version Visualization version Unicode version | ||
| Description: Formula-building rule for four existential quantifiers (deduction rule). (Contributed by NM, 3-Aug-1995.) |
| Ref | Expression |
|---|---|
| 4exbidv.1 |
|
| Ref | Expression |
|---|---|
| 4exbidv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4exbidv.1 |
. . 3
| |
| 2 | 1 | 2exbidv 1852 |
. 2
|
| 3 | 2 | 2exbidv 1852 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 |
| This theorem depends on definitions: df-bi 197 df-ex 1705 |
| This theorem is referenced by: ceqsex8v 3249 copsex4g 4959 opbrop 5198 ov3 6797 brecop 7840 addsrmo 9894 mulsrmo 9895 addsrpr 9896 mulsrpr 9897 dihopelvalcpre 36537 xihopellsmN 36543 dihopellsm 36544 |
| Copyright terms: Public domain | W3C validator |