![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 4exbidv | Structured version Visualization version Unicode version |
Description: Formula-building rule for four existential quantifiers (deduction rule). (Contributed by NM, 3-Aug-1995.) |
Ref | Expression |
---|---|
4exbidv.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
4exbidv |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4exbidv.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | 2exbidv 1852 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | 2exbidv 1852 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 |
This theorem depends on definitions: df-bi 197 df-ex 1705 |
This theorem is referenced by: ceqsex8v 3249 copsex4g 4959 opbrop 5198 ov3 6797 brecop 7840 addsrmo 9894 mulsrmo 9895 addsrpr 9896 mulsrpr 9897 dihopelvalcpre 36537 xihopellsmN 36543 dihopellsm 36544 |
Copyright terms: Public domain | W3C validator |