| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oposlem | Structured version Visualization version Unicode version | ||
| Description: Lemma for orthoposet properties. (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| oposlem.b |
|
| oposlem.l |
|
| oposlem.o |
|
| oposlem.j |
|
| oposlem.m |
|
| oposlem.f |
|
| oposlem.u |
|
| Ref | Expression |
|---|---|
| oposlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oposlem.b |
. . . . 5
| |
| 2 | eqid 2622 |
. . . . 5
| |
| 3 | eqid 2622 |
. . . . 5
| |
| 4 | oposlem.l |
. . . . 5
| |
| 5 | oposlem.o |
. . . . 5
| |
| 6 | oposlem.j |
. . . . 5
| |
| 7 | oposlem.m |
. . . . 5
| |
| 8 | oposlem.f |
. . . . 5
| |
| 9 | oposlem.u |
. . . . 5
| |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | isopos 34467 |
. . . 4
|
| 11 | 10 | simprbi 480 |
. . 3
|
| 12 | fveq2 6191 |
. . . . . . 7
| |
| 13 | 12 | eleq1d 2686 |
. . . . . 6
|
| 14 | 12 | fveq2d 6195 |
. . . . . . 7
|
| 15 | id 22 |
. . . . . . 7
| |
| 16 | 14, 15 | eqeq12d 2637 |
. . . . . 6
|
| 17 | breq1 4656 |
. . . . . . 7
| |
| 18 | 12 | breq2d 4665 |
. . . . . . 7
|
| 19 | 17, 18 | imbi12d 334 |
. . . . . 6
|
| 20 | 13, 16, 19 | 3anbi123d 1399 |
. . . . 5
|
| 21 | 15, 12 | oveq12d 6668 |
. . . . . 6
|
| 22 | 21 | eqeq1d 2624 |
. . . . 5
|
| 23 | 15, 12 | oveq12d 6668 |
. . . . . 6
|
| 24 | 23 | eqeq1d 2624 |
. . . . 5
|
| 25 | 20, 22, 24 | 3anbi123d 1399 |
. . . 4
|
| 26 | breq2 4657 |
. . . . . . 7
| |
| 27 | fveq2 6191 |
. . . . . . . 8
| |
| 28 | 27 | breq1d 4663 |
. . . . . . 7
|
| 29 | 26, 28 | imbi12d 334 |
. . . . . 6
|
| 30 | 29 | 3anbi3d 1405 |
. . . . 5
|
| 31 | 30 | 3anbi1d 1403 |
. . . 4
|
| 32 | 25, 31 | rspc2v 3322 |
. . 3
|
| 33 | 11, 32 | mpan9 486 |
. 2
|
| 34 | 33 | 3impb 1260 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-dm 5124 df-iota 5851 df-fv 5896 df-ov 6653 df-oposet 34463 |
| This theorem is referenced by: opoccl 34481 opococ 34482 oplecon3 34486 opexmid 34494 opnoncon 34495 |
| Copyright terms: Public domain | W3C validator |