| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isopos | Structured version Visualization version Unicode version | ||
| Description: The predicate "is an orthoposet." (Contributed by NM, 20-Oct-2011.) (Revised by NM, 14-Sep-2018.) |
| Ref | Expression |
|---|---|
| isopos.b |
|
| isopos.e |
|
| isopos.g |
|
| isopos.l |
|
| isopos.o |
|
| isopos.j |
|
| isopos.m |
|
| isopos.f |
|
| isopos.u |
|
| Ref | Expression |
|---|---|
| isopos |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6191 |
. . . . . . 7
| |
| 2 | isopos.b |
. . . . . . 7
| |
| 3 | 1, 2 | syl6eqr 2674 |
. . . . . 6
|
| 4 | fveq2 6191 |
. . . . . . . 8
| |
| 5 | isopos.e |
. . . . . . . 8
| |
| 6 | 4, 5 | syl6eqr 2674 |
. . . . . . 7
|
| 7 | 6 | dmeqd 5326 |
. . . . . 6
|
| 8 | 3, 7 | eleq12d 2695 |
. . . . 5
|
| 9 | fveq2 6191 |
. . . . . . . 8
| |
| 10 | isopos.g |
. . . . . . . 8
| |
| 11 | 9, 10 | syl6eqr 2674 |
. . . . . . 7
|
| 12 | 11 | dmeqd 5326 |
. . . . . 6
|
| 13 | 3, 12 | eleq12d 2695 |
. . . . 5
|
| 14 | 8, 13 | anbi12d 747 |
. . . 4
|
| 15 | fveq2 6191 |
. . . . . . . 8
| |
| 16 | isopos.o |
. . . . . . . 8
| |
| 17 | 15, 16 | syl6eqr 2674 |
. . . . . . 7
|
| 18 | 17 | eqeq2d 2632 |
. . . . . 6
|
| 19 | 3 | eleq2d 2687 |
. . . . . . . . . 10
|
| 20 | fveq2 6191 |
. . . . . . . . . . . . 13
| |
| 21 | isopos.l |
. . . . . . . . . . . . 13
| |
| 22 | 20, 21 | syl6eqr 2674 |
. . . . . . . . . . . 12
|
| 23 | 22 | breqd 4664 |
. . . . . . . . . . 11
|
| 24 | 22 | breqd 4664 |
. . . . . . . . . . 11
|
| 25 | 23, 24 | imbi12d 334 |
. . . . . . . . . 10
|
| 26 | 19, 25 | 3anbi13d 1401 |
. . . . . . . . 9
|
| 27 | fveq2 6191 |
. . . . . . . . . . . 12
| |
| 28 | isopos.j |
. . . . . . . . . . . 12
| |
| 29 | 27, 28 | syl6eqr 2674 |
. . . . . . . . . . 11
|
| 30 | 29 | oveqd 6667 |
. . . . . . . . . 10
|
| 31 | fveq2 6191 |
. . . . . . . . . . 11
| |
| 32 | isopos.u |
. . . . . . . . . . 11
| |
| 33 | 31, 32 | syl6eqr 2674 |
. . . . . . . . . 10
|
| 34 | 30, 33 | eqeq12d 2637 |
. . . . . . . . 9
|
| 35 | fveq2 6191 |
. . . . . . . . . . . 12
| |
| 36 | isopos.m |
. . . . . . . . . . . 12
| |
| 37 | 35, 36 | syl6eqr 2674 |
. . . . . . . . . . 11
|
| 38 | 37 | oveqd 6667 |
. . . . . . . . . 10
|
| 39 | fveq2 6191 |
. . . . . . . . . . 11
| |
| 40 | isopos.f |
. . . . . . . . . . 11
| |
| 41 | 39, 40 | syl6eqr 2674 |
. . . . . . . . . 10
|
| 42 | 38, 41 | eqeq12d 2637 |
. . . . . . . . 9
|
| 43 | 26, 34, 42 | 3anbi123d 1399 |
. . . . . . . 8
|
| 44 | 3, 43 | raleqbidv 3152 |
. . . . . . 7
|
| 45 | 3, 44 | raleqbidv 3152 |
. . . . . 6
|
| 46 | 18, 45 | anbi12d 747 |
. . . . 5
|
| 47 | 46 | exbidv 1850 |
. . . 4
|
| 48 | 14, 47 | anbi12d 747 |
. . 3
|
| 49 | df-oposet 34463 |
. . 3
| |
| 50 | 48, 49 | elrab2 3366 |
. 2
|
| 51 | anass 681 |
. 2
| |
| 52 | 3anass 1042 |
. . . 4
| |
| 53 | 52 | bicomi 214 |
. . 3
|
| 54 | fvex 6201 |
. . . . 5
| |
| 55 | 16, 54 | eqeltri 2697 |
. . . 4
|
| 56 | fveq1 6190 |
. . . . . . . 8
| |
| 57 | 56 | eleq1d 2686 |
. . . . . . 7
|
| 58 | id 22 |
. . . . . . . . 9
| |
| 59 | 58, 56 | fveq12d 6197 |
. . . . . . . 8
|
| 60 | 59 | eqeq1d 2624 |
. . . . . . 7
|
| 61 | fveq1 6190 |
. . . . . . . . 9
| |
| 62 | 61, 56 | breq12d 4666 |
. . . . . . . 8
|
| 63 | 62 | imbi2d 330 |
. . . . . . 7
|
| 64 | 57, 60, 63 | 3anbi123d 1399 |
. . . . . 6
|
| 65 | 56 | oveq2d 6666 |
. . . . . . 7
|
| 66 | 65 | eqeq1d 2624 |
. . . . . 6
|
| 67 | 56 | oveq2d 6666 |
. . . . . . 7
|
| 68 | 67 | eqeq1d 2624 |
. . . . . 6
|
| 69 | 64, 66, 68 | 3anbi123d 1399 |
. . . . 5
|
| 70 | 69 | 2ralbidv 2989 |
. . . 4
|
| 71 | 55, 70 | ceqsexv 3242 |
. . 3
|
| 72 | 53, 71 | anbi12i 733 |
. 2
|
| 73 | 50, 51, 72 | 3bitr2i 288 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-dm 5124 df-iota 5851 df-fv 5896 df-ov 6653 df-oposet 34463 |
| This theorem is referenced by: opposet 34468 oposlem 34469 op01dm 34470 |
| Copyright terms: Public domain | W3C validator |