Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isopos Structured version   Visualization version   Unicode version

Theorem isopos 34467
Description: The predicate "is an orthoposet." (Contributed by NM, 20-Oct-2011.) (Revised by NM, 14-Sep-2018.)
Hypotheses
Ref Expression
isopos.b  |-  B  =  ( Base `  K
)
isopos.e  |-  U  =  ( lub `  K
)
isopos.g  |-  G  =  ( glb `  K
)
isopos.l  |-  .<_  =  ( le `  K )
isopos.o  |-  ._|_  =  ( oc `  K )
isopos.j  |-  .\/  =  ( join `  K )
isopos.m  |-  ./\  =  ( meet `  K )
isopos.f  |-  .0.  =  ( 0. `  K )
isopos.u  |-  .1.  =  ( 1. `  K )
Assertion
Ref Expression
isopos  |-  ( K  e.  OP  <->  ( ( K  e.  Poset  /\  B  e.  dom  U  /\  B  e.  dom  G )  /\  A. x  e.  B  A. y  e.  B  (
( (  ._|_  `  x
)  e.  B  /\  (  ._|_  `  (  ._|_  `  x ) )  =  x  /\  ( x 
.<_  y  ->  (  ._|_  `  y )  .<_  (  ._|_  `  x ) ) )  /\  ( x  .\/  (  ._|_  `  x )
)  =  .1.  /\  ( x  ./\  (  ._|_  `  x ) )  =  .0.  ) ) )
Distinct variable groups:    x, y, B    x,  ._|_ , y    x, K, y
Allowed substitution hints:    U( x, y)    .1. ( x, y)    G( x, y)    .\/ ( x, y)    .<_ ( x, y)    ./\ ( x, y)    .0. ( x, y)

Proof of Theorem isopos
Dummy variables  n  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . . . 7  |-  ( p  =  K  ->  ( Base `  p )  =  ( Base `  K
) )
2 isopos.b . . . . . . 7  |-  B  =  ( Base `  K
)
31, 2syl6eqr 2674 . . . . . 6  |-  ( p  =  K  ->  ( Base `  p )  =  B )
4 fveq2 6191 . . . . . . . 8  |-  ( p  =  K  ->  ( lub `  p )  =  ( lub `  K
) )
5 isopos.e . . . . . . . 8  |-  U  =  ( lub `  K
)
64, 5syl6eqr 2674 . . . . . . 7  |-  ( p  =  K  ->  ( lub `  p )  =  U )
76dmeqd 5326 . . . . . 6  |-  ( p  =  K  ->  dom  ( lub `  p )  =  dom  U )
83, 7eleq12d 2695 . . . . 5  |-  ( p  =  K  ->  (
( Base `  p )  e.  dom  ( lub `  p
)  <->  B  e.  dom  U ) )
9 fveq2 6191 . . . . . . . 8  |-  ( p  =  K  ->  ( glb `  p )  =  ( glb `  K
) )
10 isopos.g . . . . . . . 8  |-  G  =  ( glb `  K
)
119, 10syl6eqr 2674 . . . . . . 7  |-  ( p  =  K  ->  ( glb `  p )  =  G )
1211dmeqd 5326 . . . . . 6  |-  ( p  =  K  ->  dom  ( glb `  p )  =  dom  G )
133, 12eleq12d 2695 . . . . 5  |-  ( p  =  K  ->  (
( Base `  p )  e.  dom  ( glb `  p
)  <->  B  e.  dom  G ) )
148, 13anbi12d 747 . . . 4  |-  ( p  =  K  ->  (
( ( Base `  p
)  e.  dom  ( lub `  p )  /\  ( Base `  p )  e.  dom  ( glb `  p
) )  <->  ( B  e.  dom  U  /\  B  e.  dom  G ) ) )
15 fveq2 6191 . . . . . . . 8  |-  ( p  =  K  ->  ( oc `  p )  =  ( oc `  K
) )
16 isopos.o . . . . . . . 8  |-  ._|_  =  ( oc `  K )
1715, 16syl6eqr 2674 . . . . . . 7  |-  ( p  =  K  ->  ( oc `  p )  = 
._|_  )
1817eqeq2d 2632 . . . . . 6  |-  ( p  =  K  ->  (
n  =  ( oc
`  p )  <->  n  =  ._|_  ) )
193eleq2d 2687 . . . . . . . . . 10  |-  ( p  =  K  ->  (
( n `  x
)  e.  ( Base `  p )  <->  ( n `  x )  e.  B
) )
20 fveq2 6191 . . . . . . . . . . . . 13  |-  ( p  =  K  ->  ( le `  p )  =  ( le `  K
) )
21 isopos.l . . . . . . . . . . . . 13  |-  .<_  =  ( le `  K )
2220, 21syl6eqr 2674 . . . . . . . . . . . 12  |-  ( p  =  K  ->  ( le `  p )  = 
.<_  )
2322breqd 4664 . . . . . . . . . . 11  |-  ( p  =  K  ->  (
x ( le `  p ) y  <->  x  .<_  y ) )
2422breqd 4664 . . . . . . . . . . 11  |-  ( p  =  K  ->  (
( n `  y
) ( le `  p ) ( n `
 x )  <->  ( n `  y )  .<_  ( n `
 x ) ) )
2523, 24imbi12d 334 . . . . . . . . . 10  |-  ( p  =  K  ->  (
( x ( le
`  p ) y  ->  ( n `  y ) ( le
`  p ) ( n `  x ) )  <->  ( x  .<_  y  ->  ( n `  y )  .<_  ( n `
 x ) ) ) )
2619, 253anbi13d 1401 . . . . . . . . 9  |-  ( p  =  K  ->  (
( ( n `  x )  e.  (
Base `  p )  /\  ( n `  (
n `  x )
)  =  x  /\  ( x ( le
`  p ) y  ->  ( n `  y ) ( le
`  p ) ( n `  x ) ) )  <->  ( (
n `  x )  e.  B  /\  (
n `  ( n `  x ) )  =  x  /\  ( x 
.<_  y  ->  ( n `
 y )  .<_  ( n `  x
) ) ) ) )
27 fveq2 6191 . . . . . . . . . . . 12  |-  ( p  =  K  ->  ( join `  p )  =  ( join `  K
) )
28 isopos.j . . . . . . . . . . . 12  |-  .\/  =  ( join `  K )
2927, 28syl6eqr 2674 . . . . . . . . . . 11  |-  ( p  =  K  ->  ( join `  p )  = 
.\/  )
3029oveqd 6667 . . . . . . . . . 10  |-  ( p  =  K  ->  (
x ( join `  p
) ( n `  x ) )  =  ( x  .\/  (
n `  x )
) )
31 fveq2 6191 . . . . . . . . . . 11  |-  ( p  =  K  ->  ( 1. `  p )  =  ( 1. `  K
) )
32 isopos.u . . . . . . . . . . 11  |-  .1.  =  ( 1. `  K )
3331, 32syl6eqr 2674 . . . . . . . . . 10  |-  ( p  =  K  ->  ( 1. `  p )  =  .1.  )
3430, 33eqeq12d 2637 . . . . . . . . 9  |-  ( p  =  K  ->  (
( x ( join `  p ) ( n `
 x ) )  =  ( 1. `  p )  <->  ( x  .\/  ( n `  x
) )  =  .1.  ) )
35 fveq2 6191 . . . . . . . . . . . 12  |-  ( p  =  K  ->  ( meet `  p )  =  ( meet `  K
) )
36 isopos.m . . . . . . . . . . . 12  |-  ./\  =  ( meet `  K )
3735, 36syl6eqr 2674 . . . . . . . . . . 11  |-  ( p  =  K  ->  ( meet `  p )  = 
./\  )
3837oveqd 6667 . . . . . . . . . 10  |-  ( p  =  K  ->  (
x ( meet `  p
) ( n `  x ) )  =  ( x  ./\  (
n `  x )
) )
39 fveq2 6191 . . . . . . . . . . 11  |-  ( p  =  K  ->  ( 0. `  p )  =  ( 0. `  K
) )
40 isopos.f . . . . . . . . . . 11  |-  .0.  =  ( 0. `  K )
4139, 40syl6eqr 2674 . . . . . . . . . 10  |-  ( p  =  K  ->  ( 0. `  p )  =  .0.  )
4238, 41eqeq12d 2637 . . . . . . . . 9  |-  ( p  =  K  ->  (
( x ( meet `  p ) ( n `
 x ) )  =  ( 0. `  p )  <->  ( x  ./\  ( n `  x
) )  =  .0.  ) )
4326, 34, 423anbi123d 1399 . . . . . . . 8  |-  ( p  =  K  ->  (
( ( ( n `
 x )  e.  ( Base `  p
)  /\  ( n `  ( n `  x
) )  =  x  /\  ( x ( le `  p ) y  ->  ( n `  y ) ( le
`  p ) ( n `  x ) ) )  /\  (
x ( join `  p
) ( n `  x ) )  =  ( 1. `  p
)  /\  ( x
( meet `  p )
( n `  x
) )  =  ( 0. `  p ) )  <->  ( ( ( n `  x )  e.  B  /\  (
n `  ( n `  x ) )  =  x  /\  ( x 
.<_  y  ->  ( n `
 y )  .<_  ( n `  x
) ) )  /\  ( x  .\/  ( n `
 x ) )  =  .1.  /\  (
x  ./\  ( n `  x ) )  =  .0.  ) ) )
443, 43raleqbidv 3152 . . . . . . 7  |-  ( p  =  K  ->  ( A. y  e.  ( Base `  p ) ( ( ( n `  x )  e.  (
Base `  p )  /\  ( n `  (
n `  x )
)  =  x  /\  ( x ( le
`  p ) y  ->  ( n `  y ) ( le
`  p ) ( n `  x ) ) )  /\  (
x ( join `  p
) ( n `  x ) )  =  ( 1. `  p
)  /\  ( x
( meet `  p )
( n `  x
) )  =  ( 0. `  p ) )  <->  A. y  e.  B  ( ( ( n `
 x )  e.  B  /\  ( n `
 ( n `  x ) )  =  x  /\  ( x 
.<_  y  ->  ( n `
 y )  .<_  ( n `  x
) ) )  /\  ( x  .\/  ( n `
 x ) )  =  .1.  /\  (
x  ./\  ( n `  x ) )  =  .0.  ) ) )
453, 44raleqbidv 3152 . . . . . 6  |-  ( p  =  K  ->  ( A. x  e.  ( Base `  p ) A. y  e.  ( Base `  p ) ( ( ( n `  x
)  e.  ( Base `  p )  /\  (
n `  ( n `  x ) )  =  x  /\  ( x ( le `  p
) y  ->  (
n `  y )
( le `  p
) ( n `  x ) ) )  /\  ( x (
join `  p )
( n `  x
) )  =  ( 1. `  p )  /\  ( x (
meet `  p )
( n `  x
) )  =  ( 0. `  p ) )  <->  A. x  e.  B  A. y  e.  B  ( ( ( n `
 x )  e.  B  /\  ( n `
 ( n `  x ) )  =  x  /\  ( x 
.<_  y  ->  ( n `
 y )  .<_  ( n `  x
) ) )  /\  ( x  .\/  ( n `
 x ) )  =  .1.  /\  (
x  ./\  ( n `  x ) )  =  .0.  ) ) )
4618, 45anbi12d 747 . . . . 5  |-  ( p  =  K  ->  (
( n  =  ( oc `  p )  /\  A. x  e.  ( Base `  p
) A. y  e.  ( Base `  p
) ( ( ( n `  x )  e.  ( Base `  p
)  /\  ( n `  ( n `  x
) )  =  x  /\  ( x ( le `  p ) y  ->  ( n `  y ) ( le
`  p ) ( n `  x ) ) )  /\  (
x ( join `  p
) ( n `  x ) )  =  ( 1. `  p
)  /\  ( x
( meet `  p )
( n `  x
) )  =  ( 0. `  p ) ) )  <->  ( n  =  ._|_  /\  A. x  e.  B  A. y  e.  B  ( (
( n `  x
)  e.  B  /\  ( n `  (
n `  x )
)  =  x  /\  ( x  .<_  y  -> 
( n `  y
)  .<_  ( n `  x ) ) )  /\  ( x  .\/  ( n `  x
) )  =  .1. 
/\  ( x  ./\  ( n `  x
) )  =  .0.  ) ) ) )
4746exbidv 1850 . . . 4  |-  ( p  =  K  ->  ( E. n ( n  =  ( oc `  p
)  /\  A. x  e.  ( Base `  p
) A. y  e.  ( Base `  p
) ( ( ( n `  x )  e.  ( Base `  p
)  /\  ( n `  ( n `  x
) )  =  x  /\  ( x ( le `  p ) y  ->  ( n `  y ) ( le
`  p ) ( n `  x ) ) )  /\  (
x ( join `  p
) ( n `  x ) )  =  ( 1. `  p
)  /\  ( x
( meet `  p )
( n `  x
) )  =  ( 0. `  p ) ) )  <->  E. n
( n  =  ._|_  /\ 
A. x  e.  B  A. y  e.  B  ( ( ( n `
 x )  e.  B  /\  ( n `
 ( n `  x ) )  =  x  /\  ( x 
.<_  y  ->  ( n `
 y )  .<_  ( n `  x
) ) )  /\  ( x  .\/  ( n `
 x ) )  =  .1.  /\  (
x  ./\  ( n `  x ) )  =  .0.  ) ) ) )
4814, 47anbi12d 747 . . 3  |-  ( p  =  K  ->  (
( ( ( Base `  p )  e.  dom  ( lub `  p )  /\  ( Base `  p
)  e.  dom  ( glb `  p ) )  /\  E. n ( n  =  ( oc
`  p )  /\  A. x  e.  ( Base `  p ) A. y  e.  ( Base `  p
) ( ( ( n `  x )  e.  ( Base `  p
)  /\  ( n `  ( n `  x
) )  =  x  /\  ( x ( le `  p ) y  ->  ( n `  y ) ( le
`  p ) ( n `  x ) ) )  /\  (
x ( join `  p
) ( n `  x ) )  =  ( 1. `  p
)  /\  ( x
( meet `  p )
( n `  x
) )  =  ( 0. `  p ) ) ) )  <->  ( ( B  e.  dom  U  /\  B  e.  dom  G )  /\  E. n ( n  =  ._|_  /\  A. x  e.  B  A. y  e.  B  (
( ( n `  x )  e.  B  /\  ( n `  (
n `  x )
)  =  x  /\  ( x  .<_  y  -> 
( n `  y
)  .<_  ( n `  x ) ) )  /\  ( x  .\/  ( n `  x
) )  =  .1. 
/\  ( x  ./\  ( n `  x
) )  =  .0.  ) ) ) ) )
49 df-oposet 34463 . . 3  |-  OP  =  { p  e.  Poset  |  ( ( ( Base `  p
)  e.  dom  ( lub `  p )  /\  ( Base `  p )  e.  dom  ( glb `  p
) )  /\  E. n ( n  =  ( oc `  p
)  /\  A. x  e.  ( Base `  p
) A. y  e.  ( Base `  p
) ( ( ( n `  x )  e.  ( Base `  p
)  /\  ( n `  ( n `  x
) )  =  x  /\  ( x ( le `  p ) y  ->  ( n `  y ) ( le
`  p ) ( n `  x ) ) )  /\  (
x ( join `  p
) ( n `  x ) )  =  ( 1. `  p
)  /\  ( x
( meet `  p )
( n `  x
) )  =  ( 0. `  p ) ) ) ) }
5048, 49elrab2 3366 . 2  |-  ( K  e.  OP  <->  ( K  e.  Poset  /\  ( ( B  e.  dom  U  /\  B  e.  dom  G )  /\  E. n ( n  =  ._|_  /\  A. x  e.  B  A. y  e.  B  (
( ( n `  x )  e.  B  /\  ( n `  (
n `  x )
)  =  x  /\  ( x  .<_  y  -> 
( n `  y
)  .<_  ( n `  x ) ) )  /\  ( x  .\/  ( n `  x
) )  =  .1. 
/\  ( x  ./\  ( n `  x
) )  =  .0.  ) ) ) ) )
51 anass 681 . 2  |-  ( ( ( K  e.  Poset  /\  ( B  e.  dom  U  /\  B  e.  dom  G ) )  /\  E. n ( n  = 
._|_  /\  A. x  e.  B  A. y  e.  B  ( ( ( n `  x )  e.  B  /\  (
n `  ( n `  x ) )  =  x  /\  ( x 
.<_  y  ->  ( n `
 y )  .<_  ( n `  x
) ) )  /\  ( x  .\/  ( n `
 x ) )  =  .1.  /\  (
x  ./\  ( n `  x ) )  =  .0.  ) ) )  <-> 
( K  e.  Poset  /\  ( ( B  e. 
dom  U  /\  B  e. 
dom  G )  /\  E. n ( n  = 
._|_  /\  A. x  e.  B  A. y  e.  B  ( ( ( n `  x )  e.  B  /\  (
n `  ( n `  x ) )  =  x  /\  ( x 
.<_  y  ->  ( n `
 y )  .<_  ( n `  x
) ) )  /\  ( x  .\/  ( n `
 x ) )  =  .1.  /\  (
x  ./\  ( n `  x ) )  =  .0.  ) ) ) ) )
52 3anass 1042 . . . 4  |-  ( ( K  e.  Poset  /\  B  e.  dom  U  /\  B  e.  dom  G )  <->  ( K  e.  Poset  /\  ( B  e.  dom  U  /\  B  e.  dom  G ) ) )
5352bicomi 214 . . 3  |-  ( ( K  e.  Poset  /\  ( B  e.  dom  U  /\  B  e.  dom  G ) )  <->  ( K  e. 
Poset  /\  B  e.  dom  U  /\  B  e.  dom  G ) )
54 fvex 6201 . . . . 5  |-  ( oc
`  K )  e. 
_V
5516, 54eqeltri 2697 . . . 4  |-  ._|_  e.  _V
56 fveq1 6190 . . . . . . . 8  |-  ( n  =  ._|_  ->  ( n `
 x )  =  (  ._|_  `  x ) )
5756eleq1d 2686 . . . . . . 7  |-  ( n  =  ._|_  ->  ( ( n `  x )  e.  B  <->  (  ._|_  `  x )  e.  B
) )
58 id 22 . . . . . . . . 9  |-  ( n  =  ._|_  ->  n  = 
._|_  )
5958, 56fveq12d 6197 . . . . . . . 8  |-  ( n  =  ._|_  ->  ( n `
 ( n `  x ) )  =  (  ._|_  `  (  ._|_  `  x ) ) )
6059eqeq1d 2624 . . . . . . 7  |-  ( n  =  ._|_  ->  ( ( n `  ( n `
 x ) )  =  x  <->  (  ._|_  `  (  ._|_  `  x ) )  =  x ) )
61 fveq1 6190 . . . . . . . . 9  |-  ( n  =  ._|_  ->  ( n `
 y )  =  (  ._|_  `  y ) )
6261, 56breq12d 4666 . . . . . . . 8  |-  ( n  =  ._|_  ->  ( ( n `  y ) 
.<_  ( n `  x
)  <->  (  ._|_  `  y
)  .<_  (  ._|_  `  x
) ) )
6362imbi2d 330 . . . . . . 7  |-  ( n  =  ._|_  ->  ( ( x  .<_  y  ->  ( n `  y ) 
.<_  ( n `  x
) )  <->  ( x  .<_  y  ->  (  ._|_  `  y )  .<_  (  ._|_  `  x ) ) ) )
6457, 60, 633anbi123d 1399 . . . . . 6  |-  ( n  =  ._|_  ->  ( ( ( n `  x
)  e.  B  /\  ( n `  (
n `  x )
)  =  x  /\  ( x  .<_  y  -> 
( n `  y
)  .<_  ( n `  x ) ) )  <-> 
( (  ._|_  `  x
)  e.  B  /\  (  ._|_  `  (  ._|_  `  x ) )  =  x  /\  ( x 
.<_  y  ->  (  ._|_  `  y )  .<_  (  ._|_  `  x ) ) ) ) )
6556oveq2d 6666 . . . . . . 7  |-  ( n  =  ._|_  ->  ( x 
.\/  ( n `  x ) )  =  ( x  .\/  (  ._|_  `  x ) ) )
6665eqeq1d 2624 . . . . . 6  |-  ( n  =  ._|_  ->  ( ( x  .\/  ( n `
 x ) )  =  .1.  <->  ( x  .\/  (  ._|_  `  x
) )  =  .1.  ) )
6756oveq2d 6666 . . . . . . 7  |-  ( n  =  ._|_  ->  ( x 
./\  ( n `  x ) )  =  ( x  ./\  (  ._|_  `  x ) ) )
6867eqeq1d 2624 . . . . . 6  |-  ( n  =  ._|_  ->  ( ( x  ./\  ( n `  x ) )  =  .0.  <->  ( x  ./\  (  ._|_  `  x )
)  =  .0.  )
)
6964, 66, 683anbi123d 1399 . . . . 5  |-  ( n  =  ._|_  ->  ( ( ( ( n `  x )  e.  B  /\  ( n `  (
n `  x )
)  =  x  /\  ( x  .<_  y  -> 
( n `  y
)  .<_  ( n `  x ) ) )  /\  ( x  .\/  ( n `  x
) )  =  .1. 
/\  ( x  ./\  ( n `  x
) )  =  .0.  )  <->  ( ( ( 
._|_  `  x )  e.  B  /\  (  ._|_  `  (  ._|_  `  x ) )  =  x  /\  ( x  .<_  y  -> 
(  ._|_  `  y )  .<_  (  ._|_  `  x ) ) )  /\  (
x  .\/  (  ._|_  `  x ) )  =  .1.  /\  ( x 
./\  (  ._|_  `  x
) )  =  .0.  ) ) )
70692ralbidv 2989 . . . 4  |-  ( n  =  ._|_  ->  ( A. x  e.  B  A. y  e.  B  (
( ( n `  x )  e.  B  /\  ( n `  (
n `  x )
)  =  x  /\  ( x  .<_  y  -> 
( n `  y
)  .<_  ( n `  x ) ) )  /\  ( x  .\/  ( n `  x
) )  =  .1. 
/\  ( x  ./\  ( n `  x
) )  =  .0.  )  <->  A. x  e.  B  A. y  e.  B  ( ( (  ._|_  `  x )  e.  B  /\  (  ._|_  `  (  ._|_  `  x ) )  =  x  /\  (
x  .<_  y  ->  (  ._|_  `  y )  .<_  (  ._|_  `  x )
) )  /\  (
x  .\/  (  ._|_  `  x ) )  =  .1.  /\  ( x 
./\  (  ._|_  `  x
) )  =  .0.  ) ) )
7155, 70ceqsexv 3242 . . 3  |-  ( E. n ( n  = 
._|_  /\  A. x  e.  B  A. y  e.  B  ( ( ( n `  x )  e.  B  /\  (
n `  ( n `  x ) )  =  x  /\  ( x 
.<_  y  ->  ( n `
 y )  .<_  ( n `  x
) ) )  /\  ( x  .\/  ( n `
 x ) )  =  .1.  /\  (
x  ./\  ( n `  x ) )  =  .0.  ) )  <->  A. x  e.  B  A. y  e.  B  ( (
(  ._|_  `  x )  e.  B  /\  (  ._|_  `  (  ._|_  `  x
) )  =  x  /\  ( x  .<_  y  ->  (  ._|_  `  y
)  .<_  (  ._|_  `  x
) ) )  /\  ( x  .\/  (  ._|_  `  x ) )  =  .1.  /\  ( x 
./\  (  ._|_  `  x
) )  =  .0.  ) )
7253, 71anbi12i 733 . 2  |-  ( ( ( K  e.  Poset  /\  ( B  e.  dom  U  /\  B  e.  dom  G ) )  /\  E. n ( n  = 
._|_  /\  A. x  e.  B  A. y  e.  B  ( ( ( n `  x )  e.  B  /\  (
n `  ( n `  x ) )  =  x  /\  ( x 
.<_  y  ->  ( n `
 y )  .<_  ( n `  x
) ) )  /\  ( x  .\/  ( n `
 x ) )  =  .1.  /\  (
x  ./\  ( n `  x ) )  =  .0.  ) ) )  <-> 
( ( K  e. 
Poset  /\  B  e.  dom  U  /\  B  e.  dom  G )  /\  A. x  e.  B  A. y  e.  B  ( (
(  ._|_  `  x )  e.  B  /\  (  ._|_  `  (  ._|_  `  x
) )  =  x  /\  ( x  .<_  y  ->  (  ._|_  `  y
)  .<_  (  ._|_  `  x
) ) )  /\  ( x  .\/  (  ._|_  `  x ) )  =  .1.  /\  ( x 
./\  (  ._|_  `  x
) )  =  .0.  ) ) )
7350, 51, 723bitr2i 288 1  |-  ( K  e.  OP  <->  ( ( K  e.  Poset  /\  B  e.  dom  U  /\  B  e.  dom  G )  /\  A. x  e.  B  A. y  e.  B  (
( (  ._|_  `  x
)  e.  B  /\  (  ._|_  `  (  ._|_  `  x ) )  =  x  /\  ( x 
.<_  y  ->  (  ._|_  `  y )  .<_  (  ._|_  `  x ) ) )  /\  ( x  .\/  (  ._|_  `  x )
)  =  .1.  /\  ( x  ./\  (  ._|_  `  x ) )  =  .0.  ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   _Vcvv 3200   class class class wbr 4653   dom cdm 5114   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   occoc 15949   Posetcpo 16940   lubclub 16942   glbcglb 16943   joincjn 16944   meetcmee 16945   0.cp0 17037   1.cp1 17038   OPcops 34459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-dm 5124  df-iota 5851  df-fv 5896  df-ov 6653  df-oposet 34463
This theorem is referenced by:  opposet  34468  oposlem  34469  op01dm  34470
  Copyright terms: Public domain W3C validator