![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opoccl | Structured version Visualization version Unicode version |
Description: Closure of orthocomplement operation. (choccl 28165 analog.) (Contributed by NM, 20-Oct-2011.) |
Ref | Expression |
---|---|
opoccl.b |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
opoccl.o |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
opoccl |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opoccl.b |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eqid 2622 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | opoccl.o |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | eqid 2622 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | eqid 2622 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | eqid 2622 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | eqid 2622 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 1, 2, 3, 4, 5, 6, 7 | oposlem 34469 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 8 | 3anidm23 1385 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 9 | simp1d 1073 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 10 | simp1d 1073 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-dm 5124 df-iota 5851 df-fv 5896 df-ov 6653 df-oposet 34463 |
This theorem is referenced by: opcon2b 34484 oplecon3b 34487 oplecon1b 34488 opoc1 34489 opltcon3b 34491 opltcon1b 34492 opltcon2b 34493 riotaocN 34496 oldmm1 34504 oldmm2 34505 oldmm3N 34506 oldmm4 34507 oldmj1 34508 oldmj2 34509 oldmj3 34510 oldmj4 34511 olm11 34514 latmassOLD 34516 omllaw2N 34531 omllaw4 34533 cmtcomlemN 34535 cmt2N 34537 cmt3N 34538 cmt4N 34539 cmtbr2N 34540 cmtbr3N 34541 cmtbr4N 34542 lecmtN 34543 omlfh1N 34545 omlfh3N 34546 omlspjN 34548 cvrcon3b 34564 cvrcmp2 34571 atlatmstc 34606 glbconN 34663 glbconxN 34664 cvrexch 34706 1cvrco 34758 1cvratex 34759 1cvrjat 34761 polval2N 35192 polsubN 35193 2polpmapN 35199 2polvalN 35200 poldmj1N 35214 pmapj2N 35215 polatN 35217 2polatN 35218 pnonsingN 35219 ispsubcl2N 35233 polsubclN 35238 poml4N 35239 pmapojoinN 35254 pl42lem1N 35265 lhpoc2N 35301 lhpocnle 35302 lhpmod2i2 35324 lhpmod6i1 35325 lhprelat3N 35326 trlcl 35451 trlle 35471 docaclN 36413 doca2N 36415 djajN 36426 dih1 36575 dih1dimatlem 36618 dochcl 36642 dochvalr3 36652 doch2val2 36653 dochss 36654 dochocss 36655 dochoc 36656 dochnoncon 36680 djhlj 36690 |
Copyright terms: Public domain | W3C validator |