MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opthneg Structured version   Visualization version   Unicode version

Theorem opthneg 4950
Description: Two ordered pairs are not equal iff their first components or their second components are not equal. (Contributed by AV, 13-Dec-2018.)
Assertion
Ref Expression
opthneg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  =/=  <. C ,  D >.  <-> 
( A  =/=  C  \/  B  =/=  D
) ) )

Proof of Theorem opthneg
StepHypRef Expression
1 df-ne 2795 . 2  |-  ( <. A ,  B >.  =/= 
<. C ,  D >.  <->  -.  <. A ,  B >.  = 
<. C ,  D >. )
2 opthg 4946 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  =  <. C ,  D >.  <-> 
( A  =  C  /\  B  =  D ) ) )
32notbid 308 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( -.  <. A ,  B >.  =  <. C ,  D >. 
<->  -.  ( A  =  C  /\  B  =  D ) ) )
4 ianor 509 . . . 4  |-  ( -.  ( A  =  C  /\  B  =  D )  <->  ( -.  A  =  C  \/  -.  B  =  D )
)
5 df-ne 2795 . . . . 5  |-  ( A  =/=  C  <->  -.  A  =  C )
6 df-ne 2795 . . . . 5  |-  ( B  =/=  D  <->  -.  B  =  D )
75, 6orbi12i 543 . . . 4  |-  ( ( A  =/=  C  \/  B  =/=  D )  <->  ( -.  A  =  C  \/  -.  B  =  D
) )
84, 7bitr4i 267 . . 3  |-  ( -.  ( A  =  C  /\  B  =  D )  <->  ( A  =/= 
C  \/  B  =/= 
D ) )
93, 8syl6bb 276 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( -.  <. A ,  B >.  =  <. C ,  D >. 
<->  ( A  =/=  C  \/  B  =/=  D
) ) )
101, 9syl5bb 272 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  =/=  <. C ,  D >.  <-> 
( A  =/=  C  \/  B  =/=  D
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   <.cop 4183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184
This theorem is referenced by:  opthne  4951  zlmodzxznm  42286
  Copyright terms: Public domain W3C validator