Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orderseqlem Structured version   Visualization version   Unicode version

Theorem orderseqlem 31749
Description: Lemma for poseq 31750 and soseq 31751. The function value of a sequene is either in  A or null. (Contributed by Scott Fenton, 8-Jun-2011.)
Hypothesis
Ref Expression
orderseqlem.1  |-  F  =  { f  |  E. x  e.  On  f : x --> A }
Assertion
Ref Expression
orderseqlem  |-  ( G  e.  F  ->  ( G `  X )  e.  ( A  u.  { (/)
} ) )
Distinct variable groups:    A, f, x    f, G, x    x, X
Allowed substitution hints:    F( x, f)    X( f)

Proof of Theorem orderseqlem
StepHypRef Expression
1 feq1 6026 . . . . 5  |-  ( f  =  G  ->  (
f : x --> A  <->  G :
x --> A ) )
21rexbidv 3052 . . . 4  |-  ( f  =  G  ->  ( E. x  e.  On  f : x --> A  <->  E. x  e.  On  G : x --> A ) )
3 orderseqlem.1 . . . 4  |-  F  =  { f  |  E. x  e.  On  f : x --> A }
42, 3elab2g 3353 . . 3  |-  ( G  e.  F  ->  ( G  e.  F  <->  E. x  e.  On  G : x --> A ) )
54ibi 256 . 2  |-  ( G  e.  F  ->  E. x  e.  On  G : x --> A )
6 frn 6053 . . . . 5  |-  ( G : x --> A  ->  ran  G  C_  A )
7 unss1 3782 . . . . 5  |-  ( ran 
G  C_  A  ->  ( ran  G  u.  { (/)
} )  C_  ( A  u.  { (/) } ) )
86, 7syl 17 . . . 4  |-  ( G : x --> A  -> 
( ran  G  u.  {
(/) } )  C_  ( A  u.  { (/) } ) )
9 fvrn0 6216 . . . 4  |-  ( G `
 X )  e.  ( ran  G  u.  {
(/) } )
10 ssel 3597 . . . 4  |-  ( ( ran  G  u.  { (/)
} )  C_  ( A  u.  { (/) } )  ->  ( ( G `
 X )  e.  ( ran  G  u.  {
(/) } )  ->  ( G `  X )  e.  ( A  u.  { (/)
} ) ) )
118, 9, 10mpisyl 21 . . 3  |-  ( G : x --> A  -> 
( G `  X
)  e.  ( A  u.  { (/) } ) )
1211rexlimivw 3029 . 2  |-  ( E. x  e.  On  G : x --> A  -> 
( G `  X
)  e.  ( A  u.  { (/) } ) )
135, 12syl 17 1  |-  ( G  e.  F  ->  ( G `  X )  e.  ( A  u.  { (/)
} ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   {cab 2608   E.wrex 2913    u. cun 3572    C_ wss 3574   (/)c0 3915   {csn 4177   ran crn 5115   Oncon0 5723   -->wf 5884   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896
This theorem is referenced by:  poseq  31750  soseq  31751
  Copyright terms: Public domain W3C validator