Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dispcmp Structured version   Visualization version   Unicode version

Theorem dispcmp 29926
Description: Every discrete space is paracompact. (Contributed by Thierry Arnoux, 7-Jan-2020.)
Assertion
Ref Expression
dispcmp  |-  ( X  e.  V  ->  ~P X  e. Paracomp )

Proof of Theorem dispcmp
Dummy variables  v 
y  z  u  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 distop 20799 . . 3  |-  ( X  e.  V  ->  ~P X  e.  Top )
2 simpr 477 . . . . . . . . . . . 12  |-  ( ( x  e.  X  /\  u  =  { x } )  ->  u  =  { x } )
3 snelpwi 4912 . . . . . . . . . . . . 13  |-  ( x  e.  X  ->  { x }  e.  ~P X
)
43adantr 481 . . . . . . . . . . . 12  |-  ( ( x  e.  X  /\  u  =  { x } )  ->  { x }  e.  ~P X
)
52, 4eqeltrd 2701 . . . . . . . . . . 11  |-  ( ( x  e.  X  /\  u  =  { x } )  ->  u  e.  ~P X )
65rexlimiva 3028 . . . . . . . . . 10  |-  ( E. x  e.  X  u  =  { x }  ->  u  e.  ~P X
)
76abssi 3677 . . . . . . . . 9  |-  { u  |  E. x  e.  X  u  =  { x } }  C_  ~P X
8 simpl 473 . . . . . . . . . . . . . 14  |-  ( ( u  =  v  /\  x  =  z )  ->  u  =  v )
9 simpr 477 . . . . . . . . . . . . . . 15  |-  ( ( u  =  v  /\  x  =  z )  ->  x  =  z )
109sneqd 4189 . . . . . . . . . . . . . 14  |-  ( ( u  =  v  /\  x  =  z )  ->  { x }  =  { z } )
118, 10eqeq12d 2637 . . . . . . . . . . . . 13  |-  ( ( u  =  v  /\  x  =  z )  ->  ( u  =  {
x }  <->  v  =  { z } ) )
1211cbvrexdva 3178 . . . . . . . . . . . 12  |-  ( u  =  v  ->  ( E. x  e.  X  u  =  { x } 
<->  E. z  e.  X  v  =  { z } ) )
1312cbvabv 2747 . . . . . . . . . . 11  |-  { u  |  E. x  e.  X  u  =  { x } }  =  {
v  |  E. z  e.  X  v  =  { z } }
1413dissnlocfin 21332 . . . . . . . . . 10  |-  ( X  e.  V  ->  { u  |  E. x  e.  X  u  =  { x } }  e.  ( LocFin `
 ~P X ) )
15 elpwg 4166 . . . . . . . . . 10  |-  ( { u  |  E. x  e.  X  u  =  { x } }  e.  ( LocFin `  ~P X )  ->  ( { u  |  E. x  e.  X  u  =  { x } }  e.  ~P ~P X  <->  { u  |  E. x  e.  X  u  =  { x } }  C_ 
~P X ) )
1614, 15syl 17 . . . . . . . . 9  |-  ( X  e.  V  ->  ( { u  |  E. x  e.  X  u  =  { x } }  e.  ~P ~P X  <->  { u  |  E. x  e.  X  u  =  { x } }  C_  ~P X
) )
177, 16mpbiri 248 . . . . . . . 8  |-  ( X  e.  V  ->  { u  |  E. x  e.  X  u  =  { x } }  e.  ~P ~P X )
1817ad2antrr 762 . . . . . . 7  |-  ( ( ( X  e.  V  /\  y  e.  ~P ~P X )  /\  X  =  U. y )  ->  { u  |  E. x  e.  X  u  =  { x } }  e.  ~P ~P X )
1914ad2antrr 762 . . . . . . 7  |-  ( ( ( X  e.  V  /\  y  e.  ~P ~P X )  /\  X  =  U. y )  ->  { u  |  E. x  e.  X  u  =  { x } }  e.  ( LocFin `  ~P X ) )
2018, 19elind 3798 . . . . . 6  |-  ( ( ( X  e.  V  /\  y  e.  ~P ~P X )  /\  X  =  U. y )  ->  { u  |  E. x  e.  X  u  =  { x } }  e.  ( ~P ~P X  i^i  ( LocFin `  ~P X ) ) )
21 simpll 790 . . . . . . 7  |-  ( ( ( X  e.  V  /\  y  e.  ~P ~P X )  /\  X  =  U. y )  ->  X  e.  V )
22 simpr 477 . . . . . . . 8  |-  ( ( ( X  e.  V  /\  y  e.  ~P ~P X )  /\  X  =  U. y )  ->  X  =  U. y
)
2322eqcomd 2628 . . . . . . 7  |-  ( ( ( X  e.  V  /\  y  e.  ~P ~P X )  /\  X  =  U. y )  ->  U. y  =  X
)
2413dissnref 21331 . . . . . . 7  |-  ( ( X  e.  V  /\  U. y  =  X )  ->  { u  |  E. x  e.  X  u  =  { x } } Ref y )
2521, 23, 24syl2anc 693 . . . . . 6  |-  ( ( ( X  e.  V  /\  y  e.  ~P ~P X )  /\  X  =  U. y )  ->  { u  |  E. x  e.  X  u  =  { x } } Ref y )
26 breq1 4656 . . . . . . 7  |-  ( z  =  { u  |  E. x  e.  X  u  =  { x } }  ->  ( z Ref y  <->  { u  |  E. x  e.  X  u  =  { x } } Ref y ) )
2726rspcev 3309 . . . . . 6  |-  ( ( { u  |  E. x  e.  X  u  =  { x } }  e.  ( ~P ~P X  i^i  ( LocFin `  ~P X ) )  /\  { u  |  E. x  e.  X  u  =  { x } } Ref y )  ->  E. z  e.  ( ~P ~P X  i^i  ( LocFin `  ~P X ) ) z Ref y
)
2820, 25, 27syl2anc 693 . . . . 5  |-  ( ( ( X  e.  V  /\  y  e.  ~P ~P X )  /\  X  =  U. y )  ->  E. z  e.  ( ~P ~P X  i^i  ( LocFin `
 ~P X ) ) z Ref y
)
2928ex 450 . . . 4  |-  ( ( X  e.  V  /\  y  e.  ~P ~P X )  ->  ( X  =  U. y  ->  E. z  e.  ( ~P ~P X  i^i  ( LocFin `  ~P X ) ) z Ref y
) )
3029ralrimiva 2966 . . 3  |-  ( X  e.  V  ->  A. y  e.  ~P  ~P X ( X  =  U. y  ->  E. z  e.  ( ~P ~P X  i^i  ( LocFin `  ~P X ) ) z Ref y
) )
31 unipw 4918 . . . . 5  |-  U. ~P X  =  X
3231eqcomi 2631 . . . 4  |-  X  = 
U. ~P X
3332iscref 29911 . . 3  |-  ( ~P X  e. CovHasRef ( LocFin `  ~P X )  <->  ( ~P X  e.  Top  /\  A. y  e.  ~P  ~P X
( X  =  U. y  ->  E. z  e.  ( ~P ~P X  i^i  ( LocFin `  ~P X ) ) z Ref y
) ) )
341, 30, 33sylanbrc 698 . 2  |-  ( X  e.  V  ->  ~P X  e. CovHasRef ( LocFin `  ~P X ) )
35 ispcmp 29924 . 2  |-  ( ~P X  e. Paracomp  <->  ~P X  e. CovHasRef ( LocFin `  ~P X ) )
3634, 35sylibr 224 1  |-  ( X  e.  V  ->  ~P X  e. Paracomp )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   {csn 4177   U.cuni 4436   class class class wbr 4653   ` cfv 5888   Topctop 20698   Refcref 21305   LocFinclocfin 21307  CovHasRefccref 29909  Paracompcpcmp 29922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-en 7956  df-fin 7959  df-top 20699  df-ref 21308  df-locfin 21310  df-cref 29910  df-pcmp 29923
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator